

Impact of GW Memory in parameter estimation of BBH mergers

Based on 2301.13228

In collaboration with Diego Blas, Rodrigo Vicente, Alexander Jenkins and Enrico Barausse

"Third Eucapt Annual Symposium" 2 June 2023 CERN

Agència de Gestió d'Ajuts Universitaris i de Recerca

GRAVITATIONAL WAVE MEMORY???

Persistent deformation of space-time due to the passing of the gravitational wave...

Two kinds: linear and non-linear

"The Persistence of Memory" (also known as "The Soft Watches")

Salvador Dalí, 1931

Christodoulou '91, Blanchet & Damour '92 Wiseman & Will '91

Non-linear Gravitational Wave Memory

Waveform of a binary black hole:

$$\partial^{\mu}\partial_{\mu}\bar{\mathbf{h}}^{\ j,k} = 16\pi \Big(T_{matter}^{jk} + T_{GW}^{jk}\Big)$$

The GW itself sources GWs!

$$T_{GW}^{jk} = \frac{1}{R^2} \frac{dE_{GW}}{dtd\Omega} n_j n_k \sim \mathcal{O}(h^2)$$

- Concentrated in the merger phase
 - Persistent off-set

Abbott et al., 2016d

4

Fisher analysis: Lisa case study

 $h(\vec{\theta},t) = h_0(\vec{\theta},t) + \delta h(\vec{\theta},t)$ NRHybSur3dq8 to generate $h_0 \Rightarrow \delta h$ via **GWMemory** (C. Talbotet al)

The memory helps $(\sigma_{d_{l,wm}} < \sigma_{d_l}) \rightarrow \text{for "light" and "short" signals prior merger}$

How many memory events do we expect to detect with LISA?

 N_{th} number of events with detectable memory, i.e. $SNR \ge 1$ (or $SNR \ge 5$), in 4 yeas

8 different population models of massive binary black hole mergers Barausse et al (2020)

- \rightarrow main astrophysical uncertainties:
- SN feedback on nuclear matter
- Delay in SMBH merger (last parsec problem)
- Initial seed mass (Light or Heavy)
- Heavy Seeds most promising model

	Astrophysical Catalogues	
	Light seeds	Heavy seeds
SN-delays	$N_{\rm tot} = 47$	$N_{\rm tot} = 27.3$
	$N_{\rm th} = 0.4 (0.1)$	$N_{\rm th} = 21.2(10)$
	$\langle \rho \rangle = 0.04$	$\langle \rho \rangle = 6$
	$ ho_{ m max}=7$	$\rho_{\rm max} = 97$
noSN-delay	$N_{\rm tot} = 191$	$N_{\rm tot} = 10$
	$N_{\rm th} = 6(1)$	$N_{ m th} = 7.5(4)$
	$\langle \rho \rangle = 0.17$	$\langle \rho \rangle = 6.9$
	$\rho_{\rm max} = 11.64$	$ ho_{ m max}=68.7$
SN-short	$N_{\rm tot} = 149$	$N_{\rm tot} = 1245$
Delays	$N_{\rm th} = 1(1)$	$N_{\rm th} = 418(33)$
	$\langle \rho \rangle = 0.04$	$\langle \rho \rangle = 1$
	$\rho_{\rm max} = 5.01$	$\rho_{\rm max} = 43$
noSN-short	$N_{\rm tot} = 1203$	$N_{\rm tot} = 1251$
Delays	$N_{\rm th} = 12(2)$	$N_{\rm th} = 392(29)$
	$\langle \rho \rangle = 0.06$	$\langle \rho \rangle = 1.1$
	$\rho_{\rm max} = 17$	$\rho_{\rm max} = 51$

Q: What's the real impact of the memory for parameter estimation in the presence of (unscheduled) gaps in the data?

→ For the most promising HS model (~400 events) only 0.14 have a 5% improvement of $\sigma_{d_{lwm}}$ with the memory (gaps model used in Dey et al 2021)

Using new synthetic catalogues we predict a **larger number of events** with significant memory compared with previous studies...

Future directions:

- Other systems where the memory helps in breaking degeneracy?
 - As a probe of GR in the highly non-linear regime
- "Orphan memory", Stochastic gravitational wave background...

Thank you for the attention!

