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Dissipation during inflation

• (Indirect) coupling between inflaton and thermalised radiation: ρr ∝ T 4

• Background equations of motion: extra dissipation term

ϕ̈+ 3H[1 +Q(ϕ, T )] + V,ϕ = 0 ,

ρ̇r + 4Hρr = 3H Q(ϕ, T ) ϕ̇2 .

• Fluctuation-dissipation theorem ⇒ linear perturbations sourced by white noise ξk(t)

(see e.g. Berera et al., 2009)

δϕ̈k + [...] ∝ Qαξk(t), α > 0

δρ̇r,k + [...] ∝ Qαξk(t) ,

φ̇+ [...] = 0 (weakly coupled)
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An efficient numerical approach

• Goal: compute thermally averaged primordial power spectrum ⟨PR⟩
• Previous approaches (see e.g. Hall et al., 2004): analytical methods (imprecise),

Montecarlo (numerically demanding)

• Our proposal: Fokker-Planck equation (c.f. stochastic inflation)

• Convert system of SDEs for δϕ, δρr, φ into system of ODEs for

⟨|δϕ|2⟩, ⟨|δρr|2⟩ , ⟨|φ|2⟩ , . . . , ⟨δϕ∗δρr⟩ , . . .

• Solve system once

• Recast ⟨|δϕ|2⟩, ⟨|δρr|2⟩ , ⟨|φ|2⟩ , . . . , ⟨δϕ∗δρr⟩ , . . . into ⟨PR⟩
• No statistical error, accuracy only limited by numerical precision
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Application 1: Revisiting monomial warm inflation ☞ 2304.05978

• We propose a consistent quantization of thermally-sourced inflaton perturbations.

• Natural decomposition of the spectrum

⟨PR⟩ = P(h)
R + ⟨P(i)

R ⟩,

⟨P(h)
R ⟩ depends on initial conditions, has a quantum origin and is suppressed by

dissipation (smaller for larger Q). Recovers cold limit

⟨P(i)
R ⟩ does not depend on the initial conditions and is due purely to the thermal

noise (larger for larger Q).
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Application 1: Revisiting monomial warm inflation ☞ 2304.05978

Warm infation allows to “rescue” certain monomial models (e.g. Bartrum et al. 2014).
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Application 2: A transient dissipative phase ☞ 2208.14978

Warm inflation generally leads to increased PBH abundance (Bastero-Gil and Dı́az-Blanco,

2021). A peaked dissipative coefficient can explain dark matter through enhanced asteroid-

mass PBH production. C.f. ultra-slow-roll inflation
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Summary

• Quantization of thermally sourced δϕk(t) =⇒ spectrum decomposes into a

quantum and a thermal contribution.

• Strong dissipation enhances ⟨PR⟩ through the enhancement of its thermal

component.

• Numerical computation of power spectrum (Fokker-Planck):

• Monomial models can be reconciled with CMB.

• Transient dissipation produces a peak in the power spectrum (PBH DM, PGWs).
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