Sequential simulation-based inference for strong gravitational lensing The importance of reducing data variance

Noemi Anau Montel

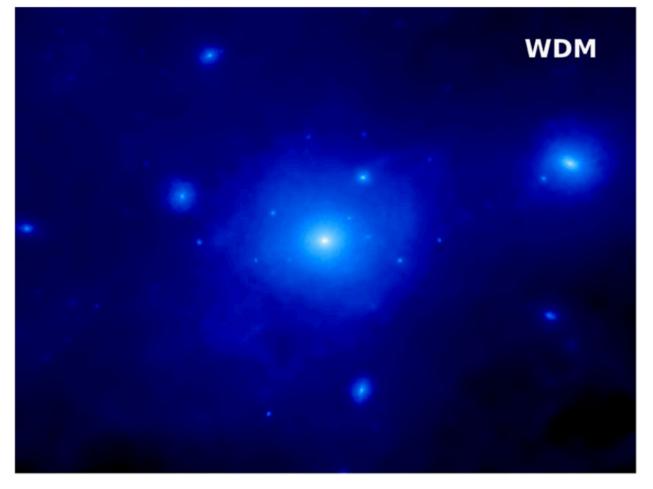
PhD student (advisor: Christoph Weniger) University of Amsterdam, GRAPPA Institute n.anaumontel@uva.nl

GRavitation AstroParticle Physics Amsterdam

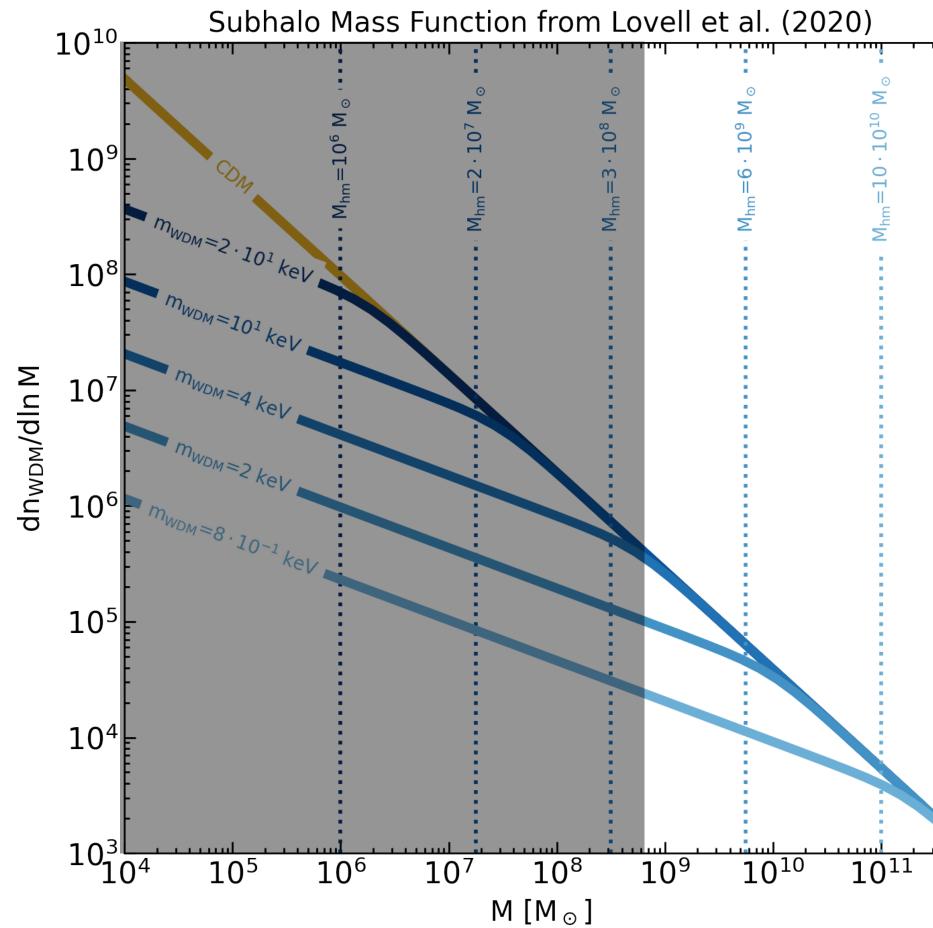
Third EuCAPT Annual Symposium | 31 May 2023

DM physics is encoded in the properties of DM halos

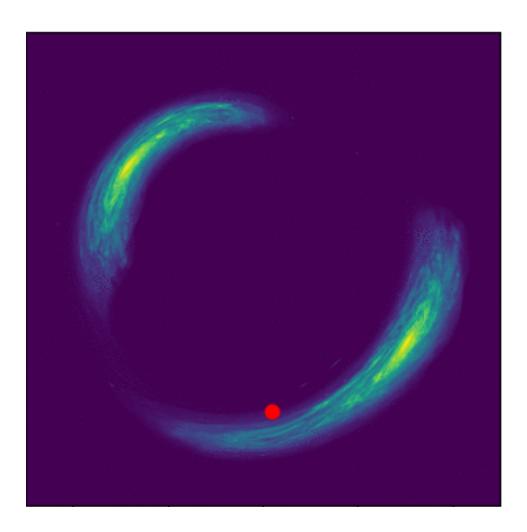


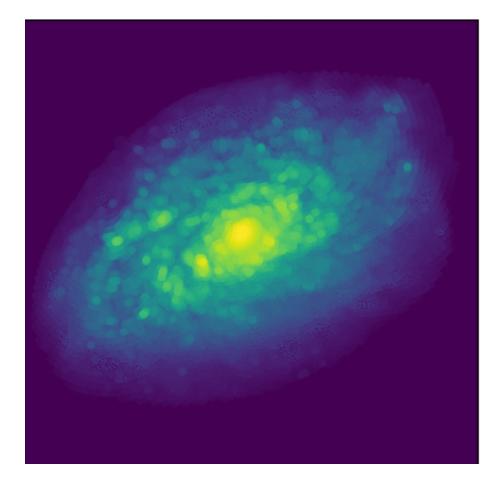


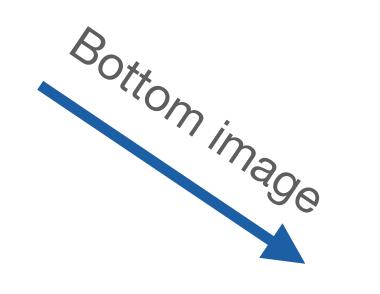
<u>Bœhm et al. (2014)</u>

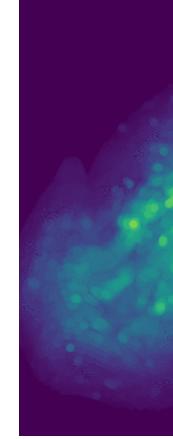


Why strong gravitational lensing

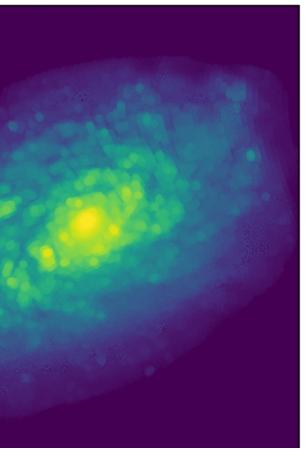


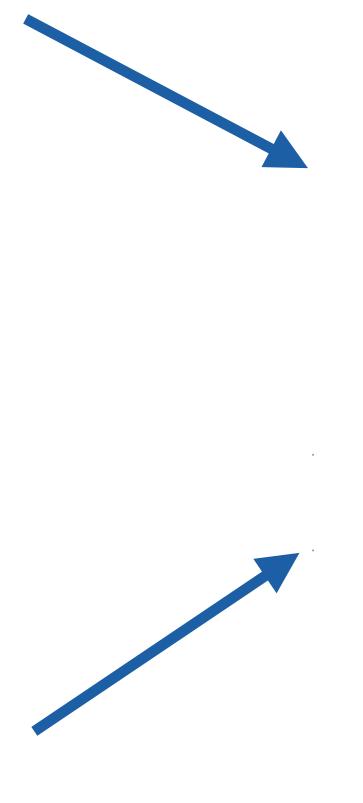


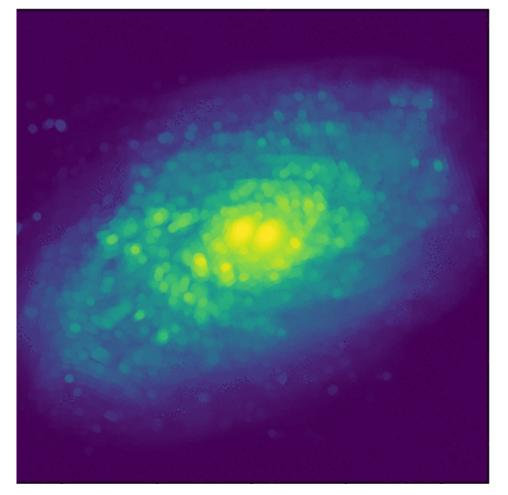




First suggested by <u>Mao</u> and Schneider (1998)

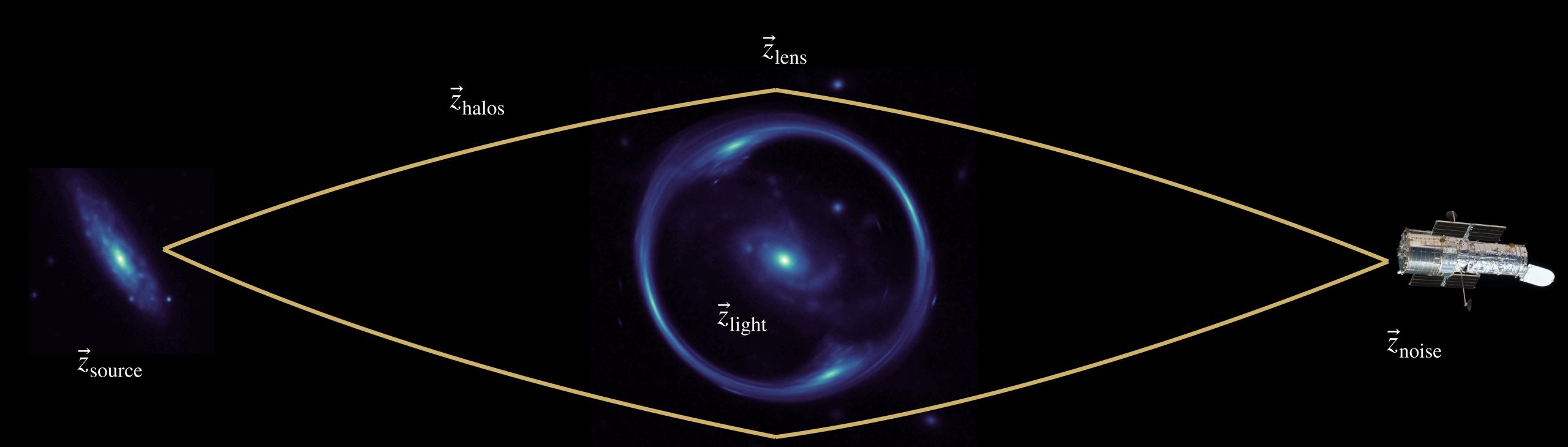






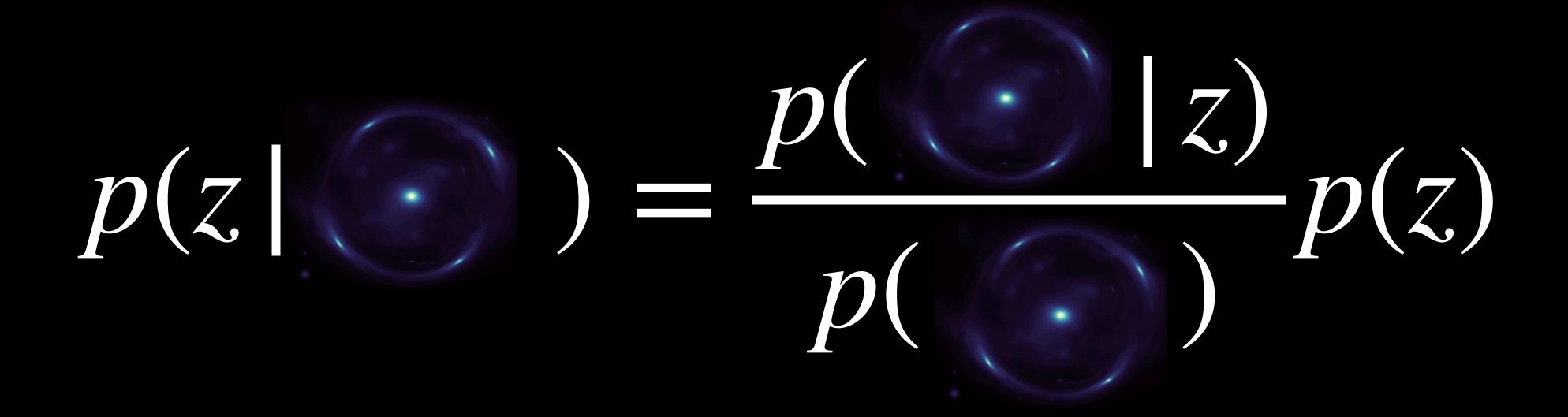
Gif credit: Adam Coogan

Strong gravitational lensing in reality



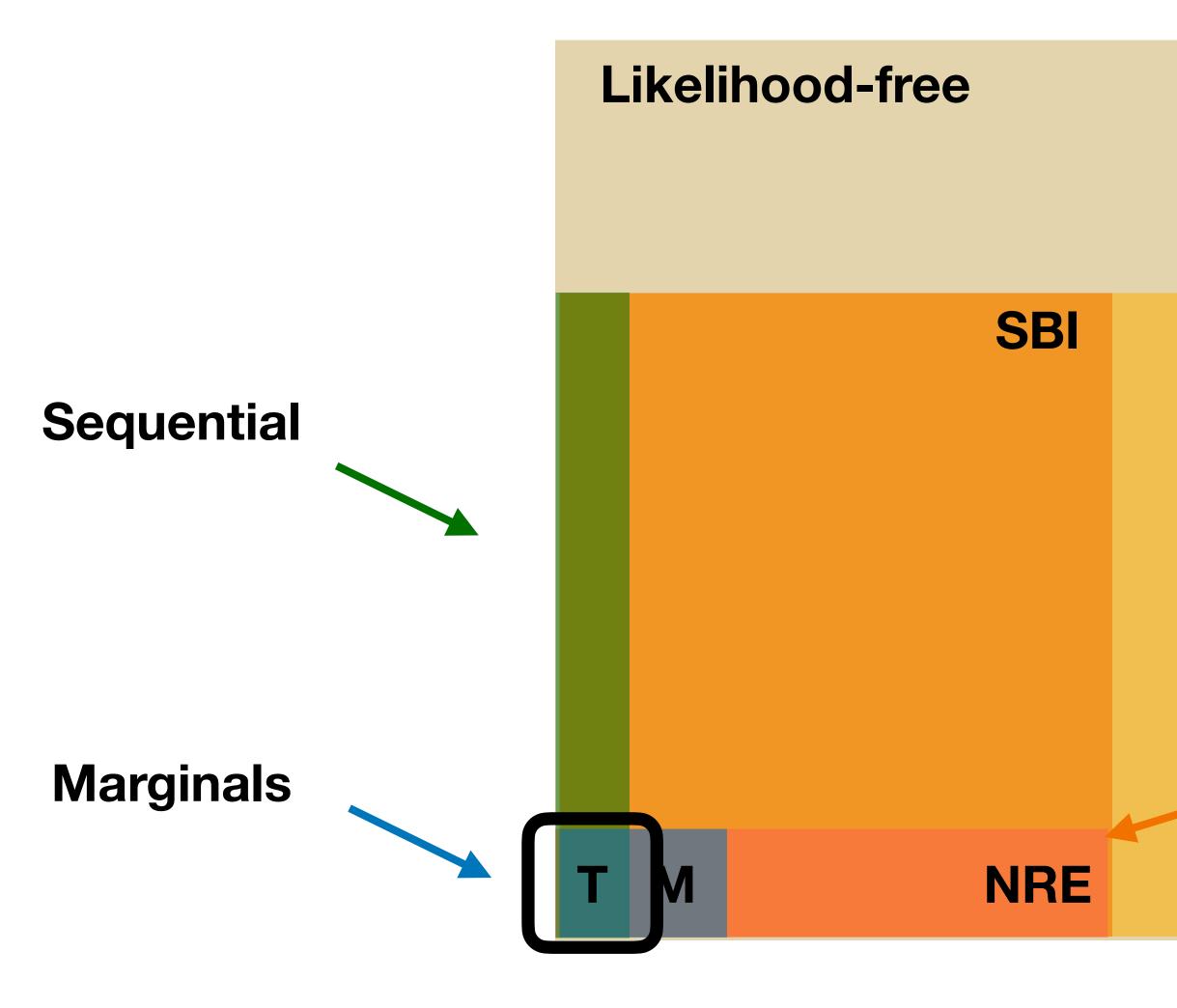
Searching for *tiny* signatures in *diverse* and *complex* observations, with *mountains* of *high-quality* data to come.

Strong gravitational lensing in reality An inference challenge



Searching for *tiny* signatures in *diverse* and *complex* observations, with *mountains* of *high-quality* data to come.

Truncated Marginal Neural Ratio Estimation A sequential simulation-based inference technique



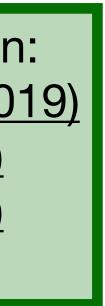
For more information:

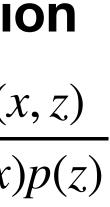
- <u>Hermans et al. (2019)</u>
- <u>Miller et al. (2020)</u>
- Miller et al. (2021)
- <u>swyft</u> package

Neural Ratio Estimation

$$r(x;z) = \frac{p(z \mid x)}{p(z)} = \frac{p(x \mid z)}{p(x)} = \frac{p(x \mid z)}{p(x)}$$

ML





TMNRE for strong gravitational lensing Where it can help

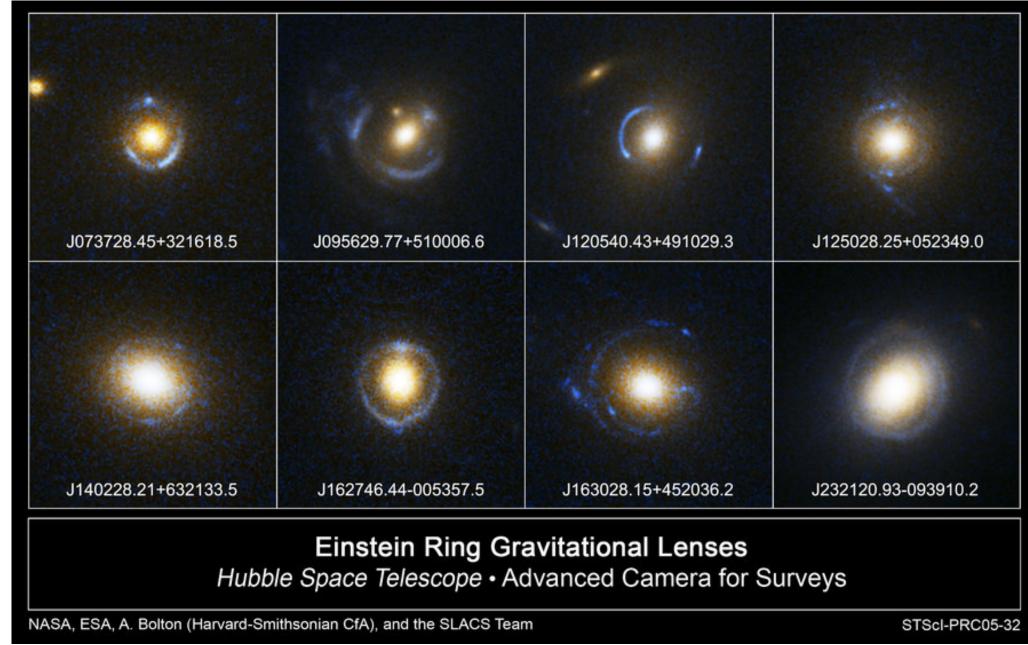
- SBI \rightarrow Can handle complex forward models Improve realism of the model without dealing with an intractable likelihood.
- **NRE** \rightarrow "Painless"

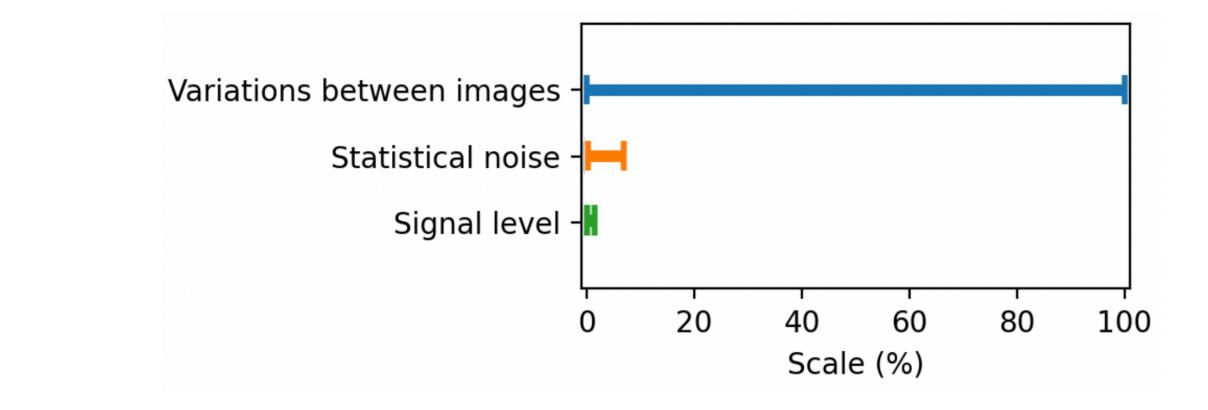
Rephrases parameter inference into a **binary** classification problem. It composes well with marginalisation and prior truncation.

 $M \rightarrow$ Higher flexibility and simulation efficiency We can **cherry-pick** the parameters we are interested in, marginalizing over the rest (e.g. numerous source, lens and halos' parameter).

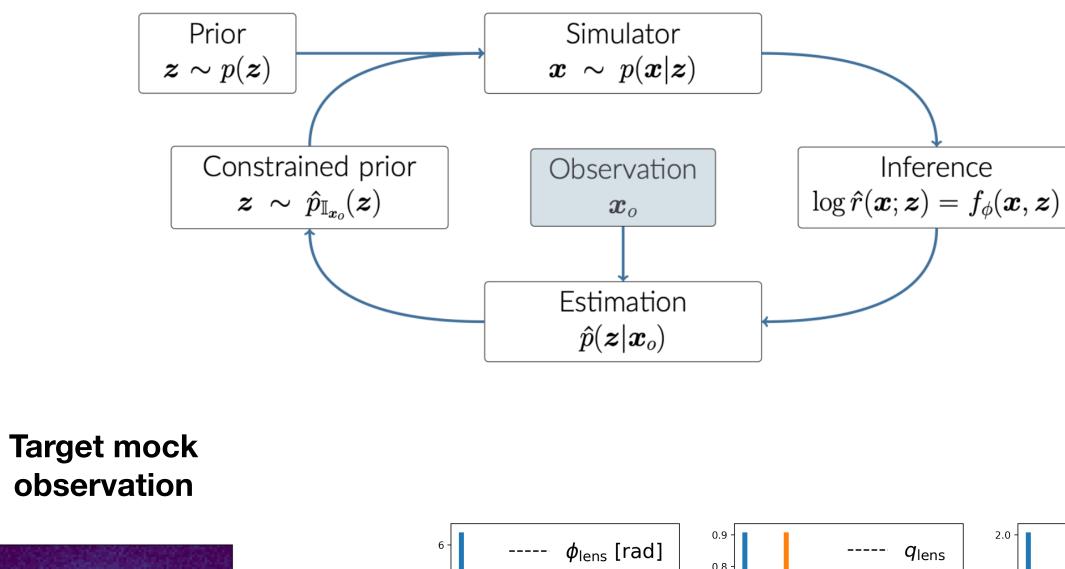
$T \rightarrow$ Learning with high-precision

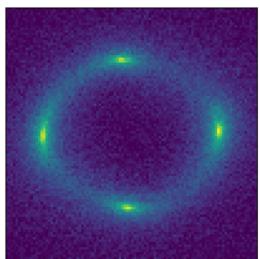
Targeting the inference enables being sensitive to an extremely **small signal** compared to noise and variations between image.

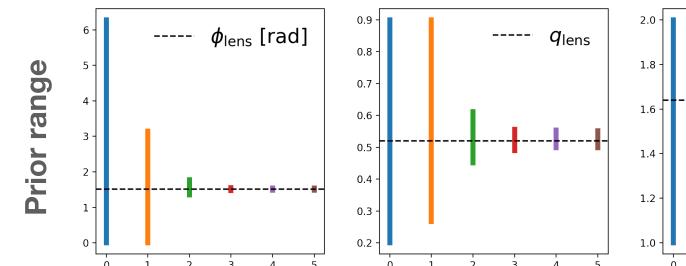




TMNRE for strong gravitational lensing Reducing data variance

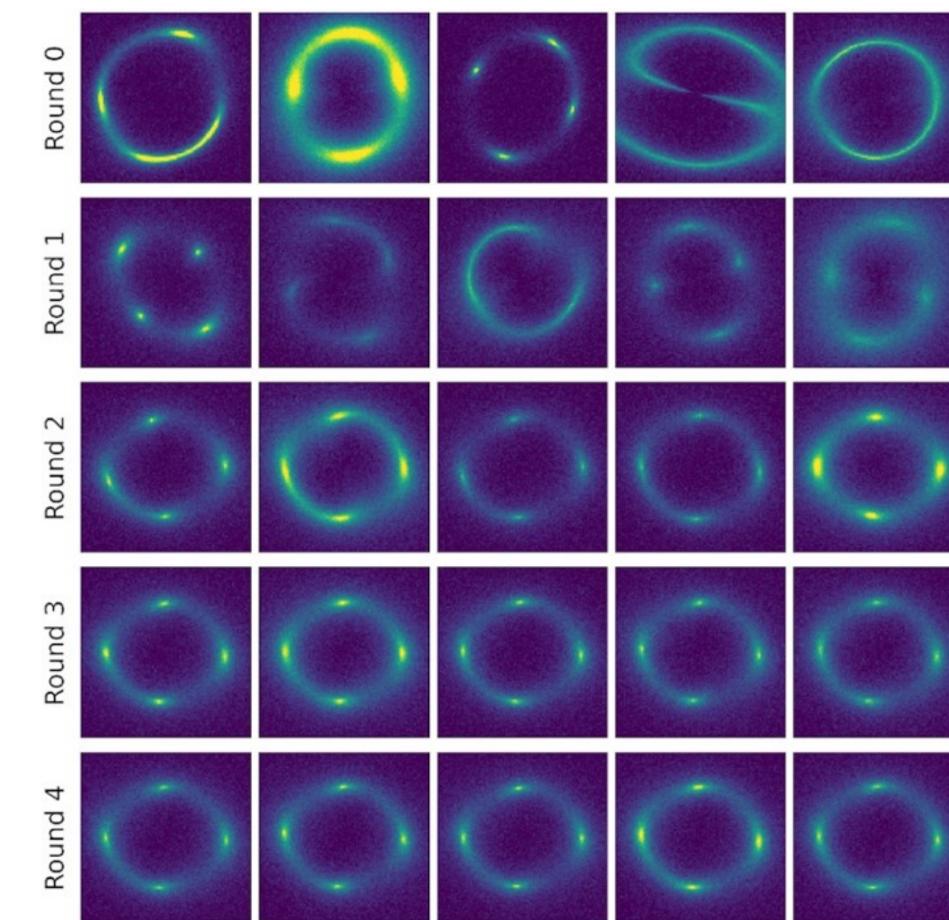


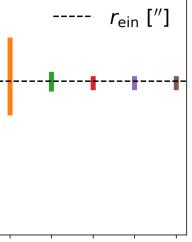




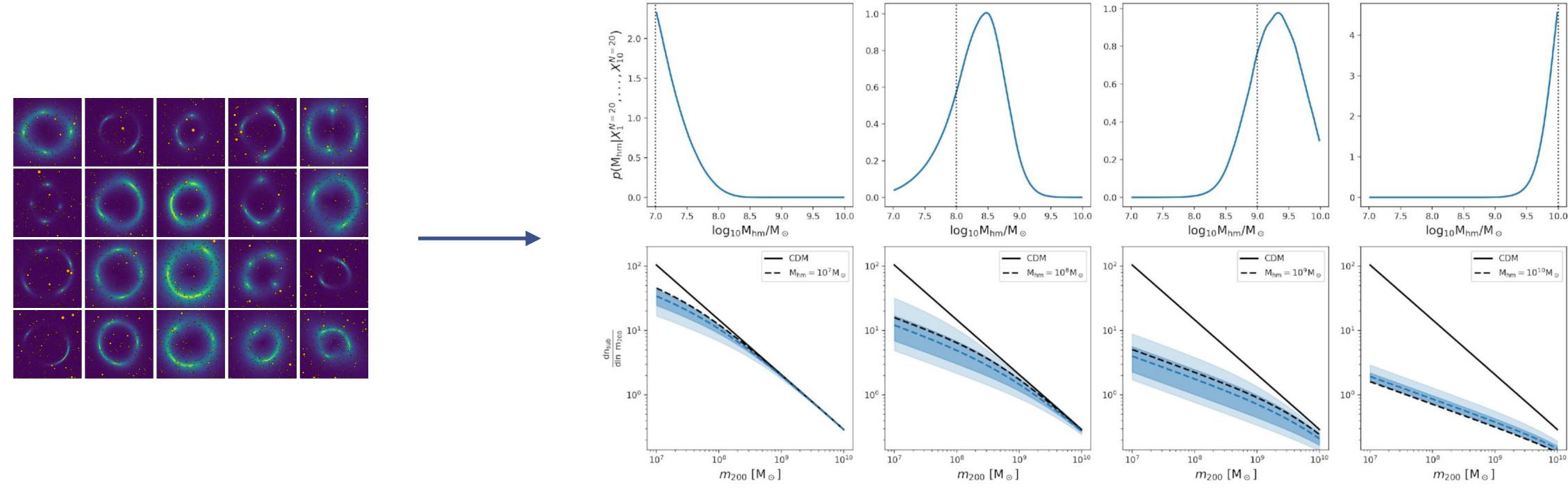
arxiv:2205.09126

Targeted training data





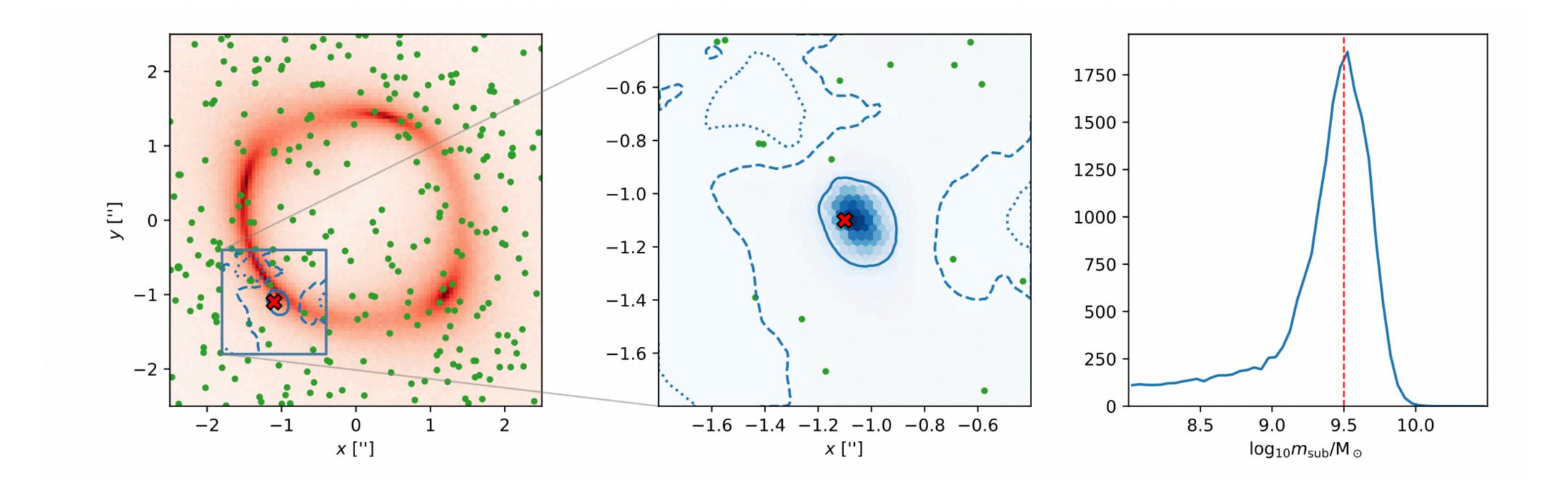
From images to dark matter Constraining DM with an ensamble of lenses



Results for subhalo mass function cutoff mass obtained by fully marginalising over main lens, source, and realistic population of subhalos and line-of-sight halos.

arxiv:2205.09126

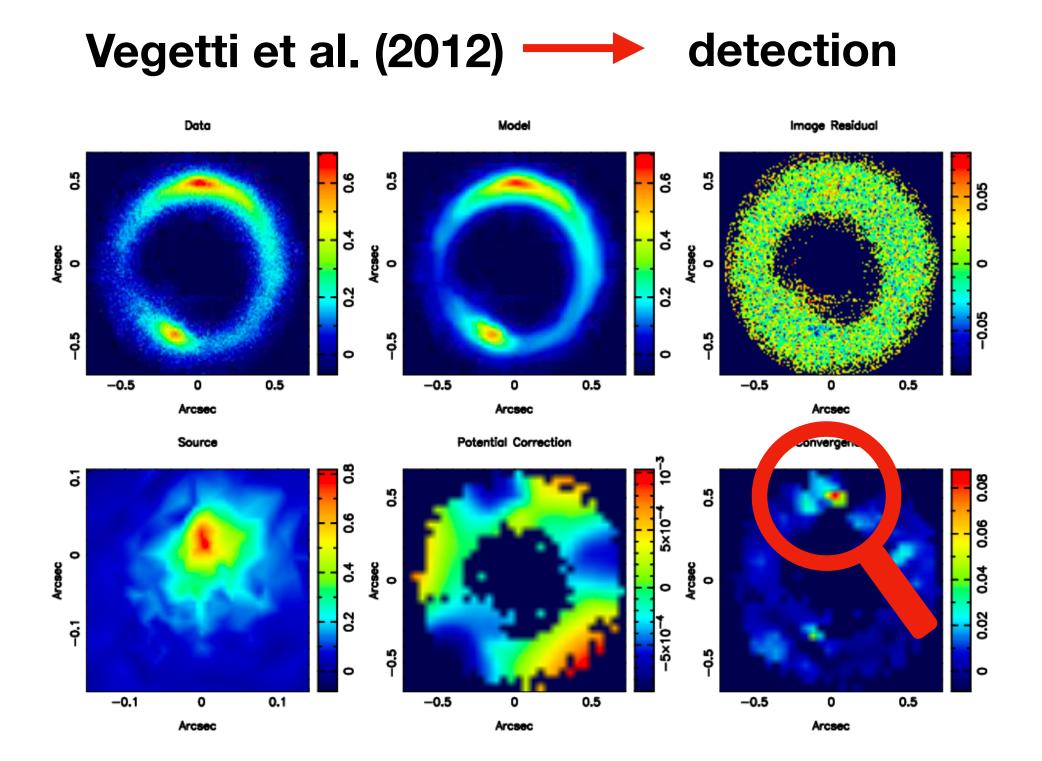
Subhalo's parameters inference Effect of the perturber population on subhalo measurements



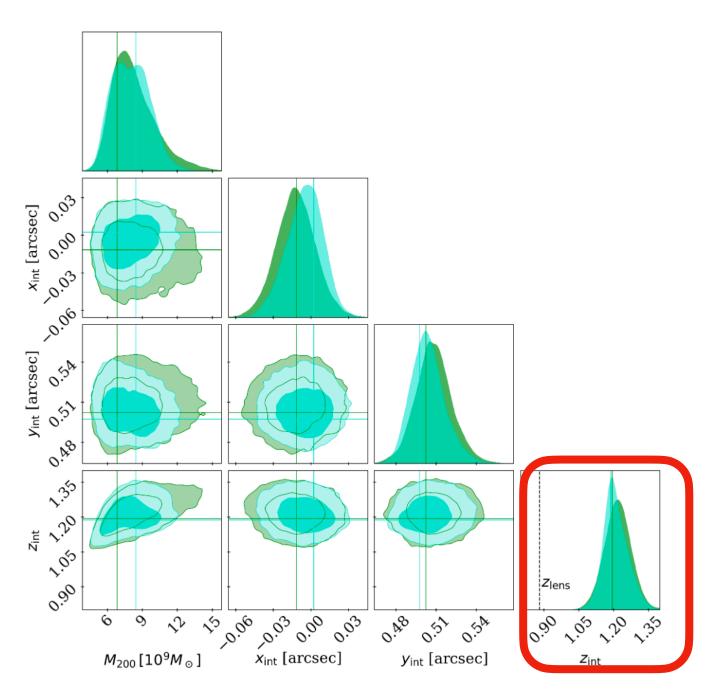
Results for position and mass of individual heavy small-scale halo obtained by fully marginalising over main lens, source, and realistic population of subhalos and line-of-sight halos.

arxiv:2209.09918

Towards analysing lensing data with ML JVAS B1938+666: a case study

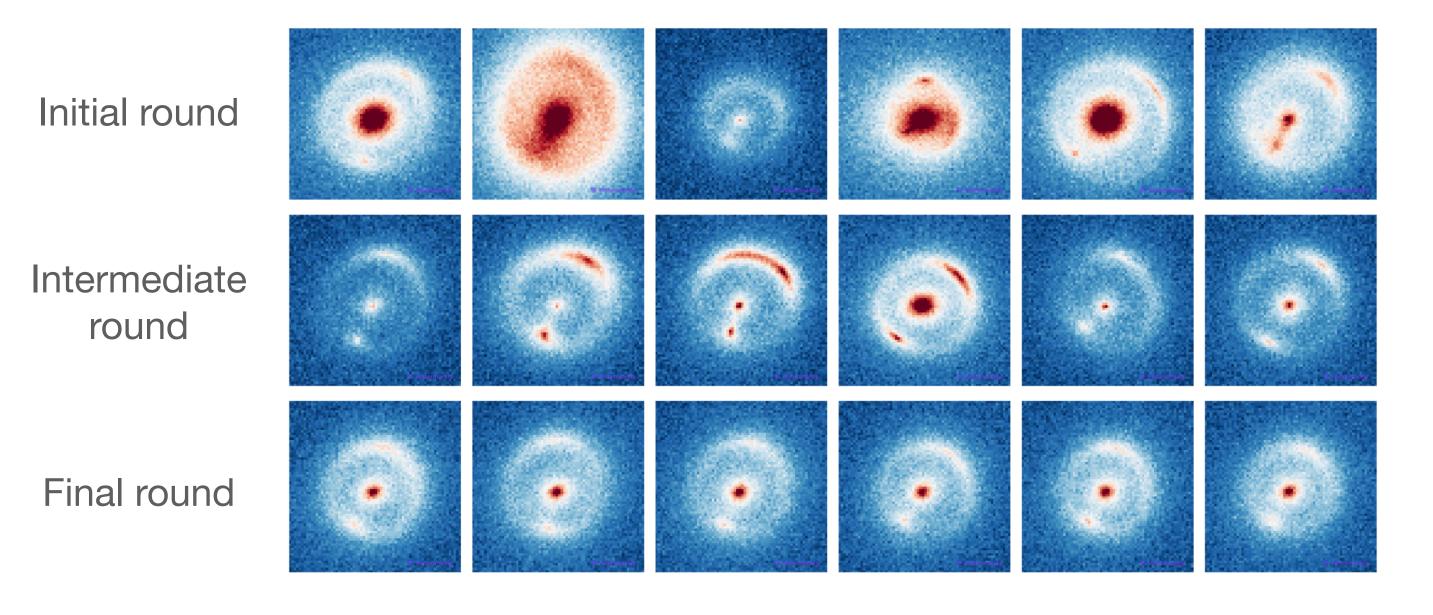


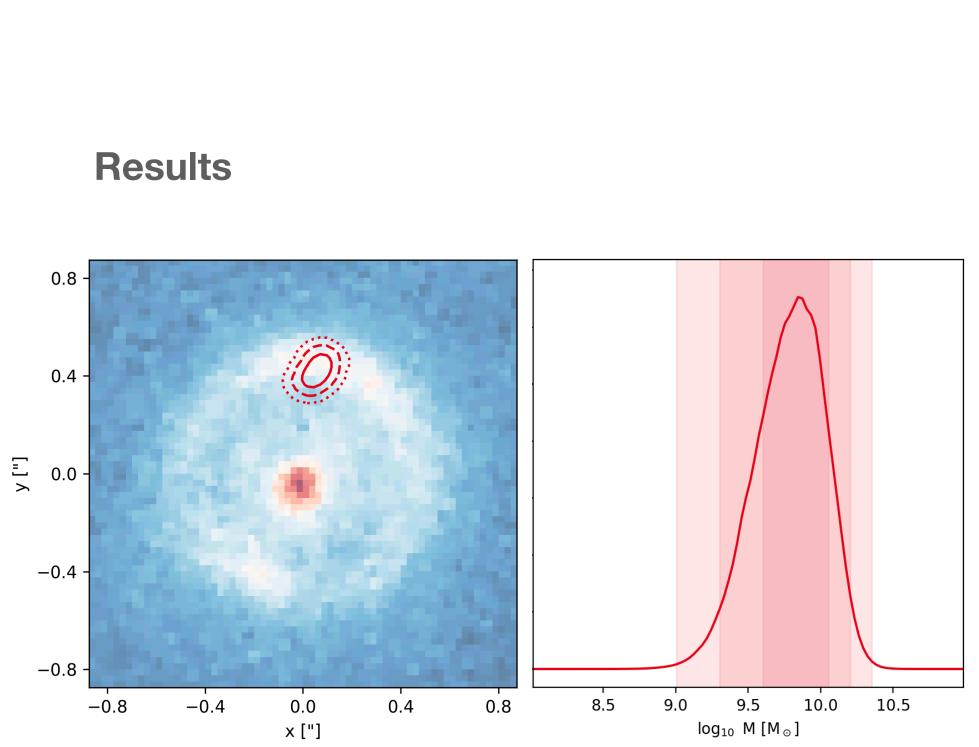
Şengül et al. (2021) ----- interloper



RELIMINARY JVAS B1938+666: a case study **Including lens light variations**

Targeted training data





We are able to locate and infer the mass of the substructure. Promising results, but still a long road!

Summary

Motivation: DM lensing analyses challenge

Searching for *tiny* signatures in *diverse* and *complex* observations, with *mountains* of *high-quality* data to come.

Technique: TMNRE

- implicit likelihood \rightarrow improve realism of the model
- marginals \rightarrow high-efficiency
- truncation \rightarrow high-precision

 \rightarrow results with **full marginalisation** over light, lens, source and small-scale halos population

Applications:

- collective substructure properties
- individual heavy subhalo parameter inference
- JVAS B1938+666

Thanks for listening!

