Smoking-Gun Signatures for Indirect Detection from Bound State Formation of Electroweak Multiplets

Giovanni Armando

Collaborators: M. Aghaie, S. Bottaro, A. Dondarini, D. Gaggero, P. Panci

EuCAPT Symposium 2023

31 May 2023

Giovanni Armando

EuCAPT Symposium

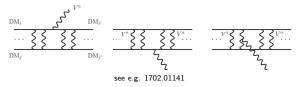
Electroweak Multiplets as Dark Matter

- Minimal Dark Matter (MDM): first proposed in 2005
 [M. Cirelli, N. Fornengo, A. Strumia, 2005, arXiv:hep-ph/0512090]
- Consider a generic Electroweak (EW) multiplet:

$$\chi \equiv \mathbf{1}_{C}, \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \dots \\ \chi_{n} \end{pmatrix} \bigg\} SU(2)_{EW} \text{ and } Y$$

The neutral component χ_0 is the Dark Matter (DM) candidate

- Consider real representations with Y = 0 and odd n
- DM mass fixed by requiring correct relic abundance \rightarrow no free parameters in the theory: **FULLY PREDICTIVE**

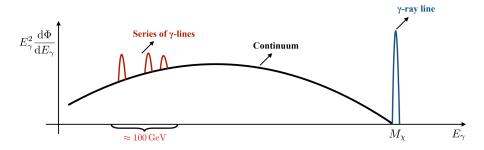

$$ightarrow$$
 For the fermion 5-plet, $M_{\chi}=13.6$ TeV

Non-Perturbative Effects and Phenomenology

• Sommerfeld Enhancement: In the non-relativistic limit, a long-range (attractive) potential between two DM particles distorts the two-body wavefunction, enhancing the annihilation cross section

$$\langle \sigma v \rangle \xrightarrow{\mathsf{SE}} R \times \langle \sigma v \rangle, \qquad R = \left| rac{\psi(\infty)}{\psi(0)} \right|^2$$

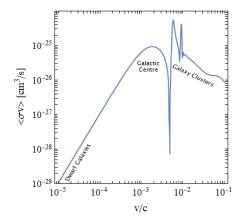
• The exchange of long range forces can lead to the Formation of Bound States through the emission of a gauge boson: $\chi_i \ \chi_j \rightarrow BS \ V$



ightarrow Get an additional photon line with $E_\gamma \sim 100$ GeV

Giovanni Armando

Bound States Formation


• Can get multiple lines for bound states with different binding energies

• Multiple line search can be extremely promising to discover/rule-out the candidate! But where to look?

Bound States Formation

 $\chi_0 \ \chi_0 \rightarrow B_{1s3} \ \gamma, M_{\chi} = 13.6 \text{ TeV}$

 \bullet Larger relative velocity gives a more distinct signature \rightarrow galaxy clusters

Summary & Outlook

- Electroweak Multiplets as WIMP candidates have no free parameters: extremely predictive!
- Phenomenology affected by non-perturbative effects: Sommerfeld Enhancement and the formation of Bound States
- Bound States give rise to distinctive features in the photon spectrum: smoking-gun signatures
- Consider available data e.g. Fermi-LAT to perform a correlated statistical analysis

Thank you for listening!

Backup Slides

Electroweak Multiplets as Dark Matter

$$\mathcal{L}_{f} = \frac{1}{2}\bar{\chi}(i\not{D} - M_{\chi})\chi, \quad \chi = \chi^{c} \quad \text{(fermion)}$$

$$\mathcal{L}_{s} = \frac{1}{2}(D_{\mu}\chi)^{2} - \frac{1}{2}M_{\chi}^{2}\chi^{2} - \frac{\lambda_{H}}{2}\chi^{2}|H|^{2} - \frac{\lambda_{\chi}}{4}\chi^{4} \quad \text{(scalar)}$$

$$D_{\mu} = \partial_{\mu} + ig_{2}W_{\mu}^{a}T^{a}$$

- The DM mass is fixed by requiring that the WIMP make up the whole DM content of the Universe \rightarrow TeV scale DM
- DM stability is obtained accidentally: no renormalisable operators break \mathcal{Z}_2 symmetry

DM Stability

- In an Effective Field Theory (EFT), can have operators of arbitrarily high dimensions suppressed by powers of a cut-off energy, Λ_{UV}
- For n=3, have fast DM decay at the renormalisable level

$$\mathcal{L} \supset \lambda_3 \chi HL$$

• For n > 3, have an accidental \mathcal{Z}_2 symmetry explicitly broken by operators with $d \ge 5$

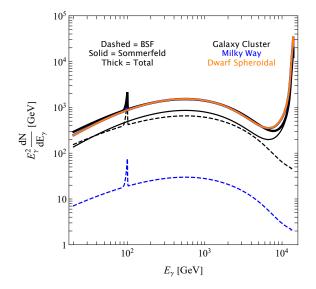
$$\mathcal{L}_{EFT} \supset \frac{\mathcal{C}_{1}}{\Lambda_{UV}^{n-3}} (\chi HL) (H^{\dagger}H)^{\frac{n-3}{2}} + ... + \frac{\mathcal{C}_{3\chi}}{\Lambda_{UV}^{3}} \chi^{3} HL$$

A sufficiently large Λ_{UV} makes sure these operators are sufficiently suppressed \rightarrow DM is stable

• These non-perturbative effects are very important both for the computation of the DM mass...

DM spin	EW n-plet	M_{χ} (TeV)	$(\sigma v)_{\rm tot}^{J=0}/(\sigma v)_{\rm max}^{J=0}$	$\Lambda_{\rm Landau}/M_{\rm DM}$	$\Lambda_{\rm UV}/M_{\rm DM}$
Real scalar	3	2.53 ± 0.01	_	2.4×10^{37}	4×10^{24}
	5	15.4 ± 0.7	0.002	$7 imes 10^{36}$	$3 imes 10^{24}$
	7	54.2 ± 3.1	0.022	$7.8 imes 10^{16}$	2×10^{24}
	9	117.8 ± 15.4	0.088	3×10^4	2×10^{24}
	11	199 ± 42	0.25	62	1×10^{24}
	13	338 ± 102	0.6	7.2	2×10^{24}
Majorana fermion	3	2.86 ± 0.01	-	2.4×10^{37}	$2 \times 10^{12*}$
	5	13.6 ± 0.8	0.003	$5.5 imes 10^{17}$	3×10^{12}
	7	48.8 ± 3.3	0.019	1.2×10^4	1×10^8
	9	113 ± 15	0.07	41	1×10^8
	11	202 ± 43	0.2	6	1×10^8
	13	324.6 ± 94	0.5	2.6	1×10^8

- ...and for the observational tests:
 - \rightarrow Collider Searches out of reach
 - \rightarrow Direct Detection only at loop-level: $\sigma_{\rm DD} \lesssim 10^{-45} {\rm cm}^2$
 - \rightarrow Turn to Indirect Detection


Indirect Detection

• Procedure:

- 1) Calculate DM annihilation cross section
- 2) Calculate flux of stable SM particles: photons and neutrinos
- 3) Compare with the observed flux
- For each DM annihilation channel, the final state (primary channel) can then decay into other SM particles (secondary channel)

$$\frac{d\Phi_{\gamma}}{d\Omega \ dE} = \underbrace{\frac{1}{2} \frac{r_{\odot}}{4\pi} \left(\frac{\rho_{\odot}}{M_{\chi}}\right)^2 \int_{\text{l.o.s.}} \frac{ds}{r_{\odot}} \left(\frac{\rho_{\text{DM}}(s)}{\rho_{\odot}}\right)^2}_{\text{Astrophysics}} \underbrace{\sum_{f} \langle \sigma v \rangle_f \frac{dN_{\gamma}^f}{dE}}_{\text{Particle Physics}}$$

Expected Photon Flux

