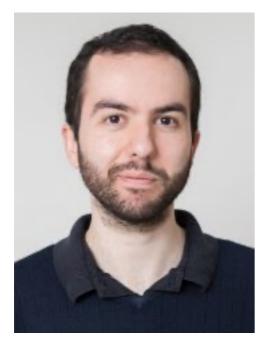

3rd EuCAPT Symposium

Poster and Lightning talk Prizes

Posters

45 posters presented, online + in person



(a subset taken from mattermost)

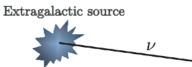
37

Gabriel Massoni Salla

University of Sao Paulo and DESY

Characterizing dark matterinduced neutrino potentials

Characterising dark matter-induced neutrino potentials



Gabriel M. Salla Physics Institute of the Universisty of Sao Paulo, Brazil Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Eur. Phys. J. C 83 (2023) 3, 204 – arXiv 2209.00442

DM Halo

Motivation

(AGNs, GRBs, ...) • $E_{\nu} \gtrsim \text{PeV}$

- A lot of DM in the way!
- How is the propagation affected for general DM?
- Under what circumstances could we observe an effect?

On-shell formalism

• Little-group covariance of S-matrix fixes amplitudes:

 $\mathcal{A} = \sum_{i=1}^{i} (\text{couplings}) \times (\text{spinor structures})$ Can depend on kinematical invariants $s_{ij} = (p_i + p_j)^2, \ \epsilon_{\mu\nu\alpha\beta} p_1^{\mu} p_2^{\nu} p_3^{\alpha} p_4^{\beta} \qquad \qquad \forall p_1^{i} p_2^{j} \rangle, \ \langle p_1^{I} | p_2 | p_3^{J}], \cdots$

• Example for $s_{\chi} = 0$:

 $\mathcal{A}\left[\nu_{1}^{i}\bar{\nu}_{2}^{j}\chi_{3}\bar{\chi}_{4}\right] = g_{1}^{ij}\langle\mathbf{1}_{i}\mathbf{2}_{j}\rangle + g_{2}^{ij}[\mathbf{1}_{i}\mathbf{2}_{j}] + g_{3}^{ij}\langle\mathbf{1}_{i}|p_{3}|\mathbf{2}_{j}] + g_{4}^{ij}[\mathbf{1}_{i}|p_{3}|\mathbf{2}_{j}\rangle$

 $\rightarrow g = g(s_{12}, s_{13}, m_{\chi}, m_{\nu}), \quad i, j = \text{ flavor indices}$

Results

- General formulas for DM potentials:
 - \rightarrow Valid for any mass and spin;
 - \rightarrow Hold for any type of interaction (contact, tree- or loop-exchange).
- Impact on oscillation observables: \rightarrow Only ultra-light scalar DM (contact
- Proof of concept:

interactions).

 \rightarrow On-shell methods crucial to derive general results.

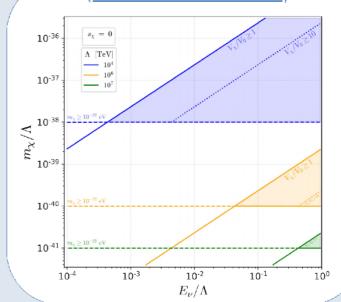
Observables

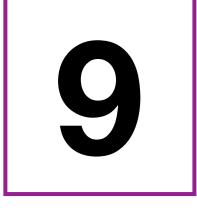
- Neutrino-DM interaction: $\mathcal{A}\left[\nu\bar{\nu}\chi\bar{\chi}\right] \neq 0$
- DM background affects neutrino propagation:

 $p^2 - m_{\nu}^2 \to (p - V_p)^2 - m_{\nu}^2 - m_{\nu}V_m - V'_m m_{\nu}$

- V_p, V_m, V'_m are potentials:
 - \rightarrow Elastic forward scattering;
 - \rightarrow Non-relativistic DM;
 - \rightarrow Integrated over DM phase-space.
- For mass m_{χ} and spin s_{χ} :

$$V_p = N_{\chi} m_{\chi}^{2s_{\chi}-1} \left(c_1 + c_2 m_{\chi} + c_3 E_{\nu} \right)$$


- \rightarrow General kinematics-dependent couplings $c_i = c_i(m_\chi, E_\nu)$.
- For contact interactions (with cut-off $\ \Lambda)$:


$$V_p = \frac{N_{\chi}}{\Lambda^2} \left(\frac{m_{\chi}}{\Lambda}\right)^{2s_{\chi}-1} \left[\hat{c}_1 + \hat{c}_2 \frac{m_{\chi}}{\Lambda} + \hat{c}_3 \frac{E_{\nu}}{\Lambda}\right]$$

• Oscillation parameters affected with strength:

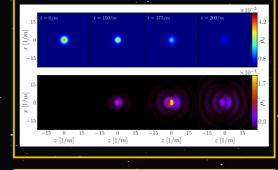
$$V_p/V_0 \propto \frac{10^{-18} \text{ eV}}{m_{\chi}} \begin{cases} 1, & s_{\chi} = 0\\ \left(\frac{m_{\chi}}{\Lambda}\right)^{2s_{\chi}-1}, & s_{\chi} \ge 1/2 \end{cases}$$

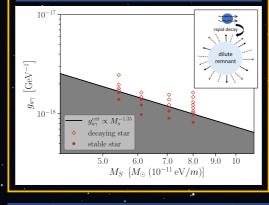
Phenomenology

Liina Chung-Jukko

King's College London

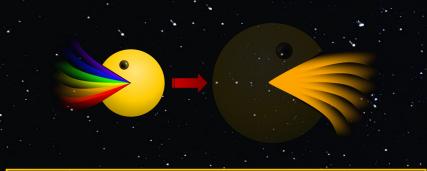
The electromagnetic weight loss of axion stars


The electromagnetic weight loss of axion stars arXiv: 2302.10100 | Liina Chung-Jukko* et al. *liina.jukko@kcl.ac.uk


An axion star is a **self-gravitating compact object** with a finite mass, composed of the axion, a particle **dark matter** candidate. It is a solution of the Einstein-Klein-Gordon equations with a time-periodic metric, in contrast to boson and Proca stars, which have a static metric. In this work, the axion real scalar field is coupled to the electromagnetic field strength tensor.

KEY QUESTION What happens when a stable axion star interacts with ambient electromagnetic radiation in full general relativity?

Critical coupling


Simulations were run for different axion star masses to confirm the existence of the critical coupling g_{ay}^{crit} , below which the characteristic frequency scale of the star does not match the parametric resonance band set by the axion-photon coupling, and hence the star stays stable. Our results restrict the existence of compact axion stars, as the decay process for these stars (above the critical coupling) is estimated to happen within seconds assuming only the Cosmic Microwave Background photons.

Theory $S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{g_{a\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \right]$ $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu, \qquad \tilde{F}^{\mu\nu} = \frac{1}{2\sqrt{-g}} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

The system of the coupled real scalar ϕ and electromagnetism $F_{\mu\nu}$ is solved using **numerical relativity** on **GRChombo**¹. We consider compact axion stars, with masses scaling as $\sim m_{Pl}^2/m$, where *m* is the scalar field mass. The initial conditions for the axion star are obtained from previous numerical work², and the electromagnetic radiation is set as a plane wave with subdominant energy to the star, modelling an EM seed from ambient radiation.

It has been demonstrated that parametric resonance can generate photons from axion stars without the need for an external magnetic field³, which is often used in axion direct detection experiments. The basic idea behind parametric resonance is that the oscillating axion star solution provides a driving force to excite photons from the EM field. In this work, parametric resonance creating photons from axion stars is observed for the first time in full general relativity.

Results

In our simulations, the axion star emits a strong burst of electromagnetic radiation for axion-photon couplings $g_{\alpha\gamma}$ larger than a critical value. This emission carries away energy from the star, resulting in a much lighter and less compact remnant, illustrated in the figures above. The timescale for the emission to start (t₀) and for the duration of the burst (τ) are quantized through a fit to the total electromagnetic energy in our simulation box. Sampling these timescales for several coupling values, the existence of a critical value becomes clear (see figures below).

Why does the star decay?

We postulate that the decay is due to parametric resonance, which explains why the star doesn't decay immediately: it first needs to drive energy into the EM field through its oscillations. This is further confirmed through the power spectrum of the emitted radiation, which peaks at the characteristic frequency of the star, indicating that it is the inherent oscillations of the scalar field that are behind the decay mechanism. When axion slers go on an electromagnetic diet.

they lose a lot of mass

 $\begin{bmatrix} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ 100 \\ 200 \\ 200 \\ 300$

¹K. Clough, P. Figueras, H. Finkel, M. Kunesch, E. A. Lim, and S. Tunyasuvunakool, GRChombo : Numerical Relativity with Adaptive Mesh Refinement, Class. Quant. Grav. 32, 245011 (2015), arXiv:1503.03436

²T. Helfer, E. A. Lim, M. A. G. Garcia, and M. A: Amin, Gravitational Wave Emission from Collisions of Compact Scalar Solitons, Phys. Rev. D 99, 044046 (2019), arXiv:1802.06733 ³D. G. Levkov, A. G. Panin, and I. I. Tkachev, Radio-emission of axion stars, Phys. Rev. D 102, 023501 (2020); arXiv:2004.05179.

In the gauge case, X can be exponentially produced via $\nu_X o x_X$.

VE [KeV]

Large Neutrino Masses meet Cosmology

Conclusions

 $|\Theta_{r}| \leq 10^{-3} \left(\frac{10}{N_{r}} - \frac{0.2 \text{ eV}}{m_{s}}\right)$

Global, 0,=10

Freestreaming

Va [KeV]

Our model generates neutrino masses in the <u>discovery range</u> of <u>KATRTN</u> and OVPB experiments while avoiding the cosmology bound

The cosmological constraints restrict the <u>medictor Mass</u> to be between <u>~1 keV and ~1 MeV</u>.

The <u>scale</u> of the model is in the <u>MeV to Sev</u> range for the <u>gauge</u> scenario while the <u>glabal</u> is limited to lower scales making it <u>Theoretically less consistent</u>.

While number density of <u>CNB</u> vs is smaller the <u>detection</u> prospects are <u>enhanced</u>.

Lightning Talks

30 Lightning Talks presented

LUCA MARSILI Ø

Ameek Malhotra () 11:52 - 11:57

11:59 - 12:04

Hannah Banks 12:13 - 12:18

12:20 - 12:25

Silvia Gasparotto 0 12:06 - 12:11

Mr Francesco Iacovelli 🥝

MIA,ROBIN,BYRON WEST 🤞

meters

į				
Robust constraints on the primord Guillermo Franco Abellán	ial spectrum from DM mini halos and the CMB anisotrop	bies 🖉		
Gravity as a Portal to Reheating, Lo	eptogenesis and Dark Matter	Basabendu Barman 🥝		
500/1-001 - Main Auditorium, CERN		11:52 - 11:57		
The Cosmological Flow : a System	atic Approach to Primordial Correlators	Denis Werth 🖉		
500/1-001 - Main Auditorium, CERN		11:59 - 12:04		
Real scalar phase transitions: bub	ble nucleation, nonperturbatively	Anna Kormu 🥝		
500/1-001 - Main Auditorium, CERN		12:06 - 12:11		
Dissipative effects during inflation		Alejandro Perez Rodriguez 🥔		
500/1-001 - Main Auditorium, CERN		12:13 - 12:18		
Reheating dynamics of dark sector	rs	Helena Kolesova 🥔		
500/1-001 - Main Auditorium, CERN		12:20 - 12:25		
Gamma-ray flux limits from nearb Pooja BHATTACHARJEE	y brown dwarfs: Implications for dark matter annih	ilating into long-lived mediators. 🥝		
Neural simulation-based inference Noemi Anau Montel	e of dark matter substructure in JVAS B1938+666 s	trong gravitational lensing system 🥝		
Dark Matter Pollution in the Diffus	se Supernova Neutrino Background	Sandra Robles 🥝		
500/1-001 - Main Auditorium, CERN	1	11:59 - 12:04		
Cosmic Web Studies in Fuzzy Dar	k Matter Cosmologies	Tibor Dome 🥝		
500/1-001 - Main Auditorium, CERN	12:06 - 12:11			
A Devesion Estimation of the Mill	y Way's Circular Velocity Curve using Gaia DR3	Sven Põder 🥝		
500/1-001 - Main Auditorium, CERN	12:13 - 12:18			
Smoking-Gun Signatures for Indir Giovanni Armando	rect Detection from Bound State Formation of Elect	roweak Multiplets		
Clovanni Annanao	Testing Grand Unified Theories with gravitation	al waves and proton decay		
	500/1-001 - Main Auditorium, CERN			
A new universal property of cosmological gravitational wave anisotropies				
	500/1-001 - Main Auditorium, CERN			
	Searching for Primordial Black Holes with the E	instein Telescope		
	500/1-001 - Main Auditorium, CERN			
	The impact of gravitational wave memory in co	straining binary black holes parameters		
(CFRN)	500/1-001 - Main Auditorium, CERN			
	EC(H)Os in the dark: Gravitational Wave backgr	ounds from colliding ECOs at atom interfero		
	500/1-001 - Main Auditorium, CERN			
	Cosmological history of the HEFT			

۱.

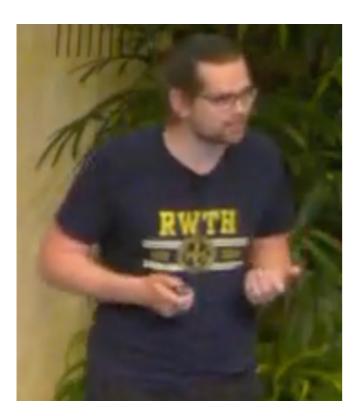
500/1-001 - Main Auditorium, CERN

Impact of Neutrino Decay on the Cosmic Neutrino Background	Leonardo Jose Ferreira Leite
500/1-001 - Main Auditorium, CERN	16:15 - 16
A First Look at Sky Anosotripies of High-Energy Neutrino Flavours	Bernanda Telalovic
500/1-001 - Main Auditorium, CERN	16:22 - 16
Dark Sectors and MiniBooNE Low Energy Excess	Jaime Hoefken Zink
500/1-001 - Main Auditorium, CERN	16:29 - 16
Space Plasma Instabilities Resolve GeV-TeV Tension and Constrain Light Axions	Oindrila Ghosh
500/1-001 - Main Auditorium, CERN	16:36 - 16
The origin of ANITA-IV events from the sinergies with IceCube	Antoni Bertólez-Martínez
500/1-001 - Main Auditorium, CERN	16:43 - 16
CR antinuclei predictions and their detectability in the next years	Pedro De la Torre Luque
500/1-001 - Main Auditorium, CERN	16:50 - 16
ng Axions through Tomography of Anisotropic Cosmic Birefringence	Alessandro Greco 0
-001 - Main Auditorium, CERN	16:15 - 16:20

	500/1-001 - Main Auditorium, CERN	16:15 - 16:20
	Extracting Cluster Information from small-scale CMB 500/1-001 - Main Auditorium, CERN	Sayan Saha 🥢 16:22 - 16:27
	Modelling of Astrophysical Systematics for Cosmology with LSST 500/1-001 - Main Auditorium, CERN	Ms Nikolina Šarčević 🥝 16:29 - 16:34
	Reliable and resource preserving emulation for Bayesian model inference 500/1-001 - Main Auditorium, CERN	Sven Günther 🧭 16:36 - 16:41
2	Antisymmetric galaxy cross-correlations 500/1-001 - Main Auditorium, CERN	Eleonora Vanzan 🥔 16:43 - 16:48
2	The Dipole of the Pantheon+SH0ES Data 500/1-001 - Main Auditorium, CERN	Francesco Sorrenti 🥔 16:50 - 16:55

Eu**CAPT**

Lightning Talks, who voted?



Sven Günther

Third EuCAPT Annual Symposium Sven Günther

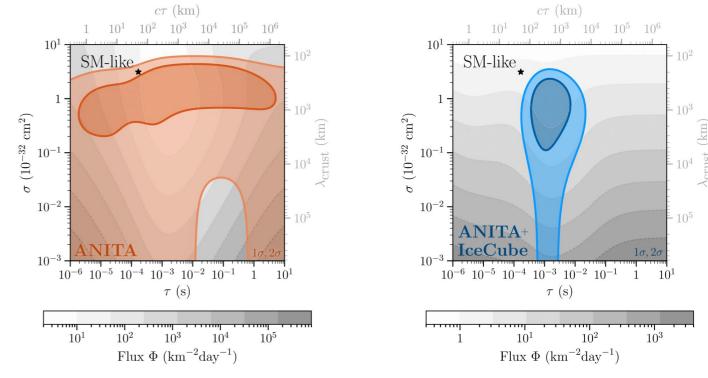
Reliable and resource preserving emulation for Bayesian model inference

(RWTH Aachen CLAIX-18 Computing Cluster)

TIK Institute for Particle Physics

RWTH Aachen University

Reliable and resource preserving emulation for Bayesian model inference


o1.06.2023 Sven Günther The Takeaway

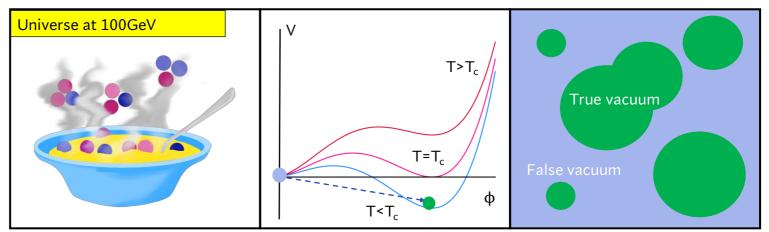
- combination of Gaussian processes and PCA allow for efficient, fast, flexible and accurate emulators
- accuracy estimate allows for **reliable** performance
- speed-up of **~10** for MCMC of LCDM+Planck, possibly more for computationally more expensive models!
- paper and full code (+MontePython) release in preparation
- test current code as easy to use cobaya plugin: <u>github.com/svenguenther/cobaya</u>

<section-header>

Universitat de Barcelona

The origin of ANITA-IV events from the synergies with IceCube

Thanks! Find me around, in the poster or in the arXiV: 2305.03746


Anna Kormu

University of Helsinki

Real scalar phase transitions: bubble nucleation, nonperturbatively

Real Scalar Phase Transitions: Bubble Nucleation, Nonperturbatively with Oliver Gould & David Weir

Anna Kormu (she/her)

Third EuCAPT Annual Symposium

1.6.2023

University of Helsinki & Helsinki Institute of Physics

Real Scalar Phase Transitions: Bubble Nucleation, Nonperturbatively

- Allows us to calibrate the uncertainty in phase transition parameters when obtained from perturbative results
- Accurate computations of the nucleation rate are crucial for calculating e.g. the GW power spectrum

One-bubble takeaway

There can be large uncertainties in nucleation rates calculated from the bounce action