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Al and the “ABC” Behind

¢ Algorithms: CNN, RNN, GAN,

ALPHAGDO

A DOCUMENTARY « SPRING 2017
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¢ Chips: CPU, GPU, ASIC, FPGA,
and dedicated Al accelerators




Nanometer IC Design/Manufacturing Complexity

Divide large chip into smaller
gl partitions, e.g., 1~2M cells each

f Still, 1 backend iteration for
} s NVIdIa Xaiver 1 one partition could take days!
QB tranS|storsI12nm

8,000 Engineer-Year!

Design target

without OPC

What you see (at design) is not
(necessarily) what you get (at fab)!



IC Design/Manufacturing Flow
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Nanometer Design/Manufacturing Challenges

L Performance/Power/Area (PPA) A. Olofsson, DARPA, ISPD-2018 Keynote

‘Mar\l|'F9r\h|rgh|||hl/V|a|r| I IEEIN  Liae EDA failed o kees 1m with Mosrets | aui?

. reiDARPA Grand Challenge: No-human-
m-the loop, 24-hour turn around time! *

($)

¢ Sec..

¢ Design cost ‘

... Can Al Help’? How?

+ DARPA ERI ($1.5B) -
IDEA/POSH “Silicon o _ﬁ_T_ﬁ.JJ
Compiler 2.0° ($100M) | ™ 7 farie e aw '




Al - IC Interactions

J1I'wo key themes Interestingly ...
¢ Al for IC

> How to leverage Al techniques to enable
agile and intelligent IC design

ML Arxiv Papers per Year

20,000 = ML Arxiv-Papers— @ Moore's Law .20

» Equivalent scaling of Moore’s law

» Democratizing IC and EDA R&D i )
+ IC for Al :

» Customized IC/FPGA for Al applications - ;

» Efficient/hardware aware ML 0 | :

2009 2011 2013 2015 2017

Closing the virtuous cycle!

Relative Number of ML Arxiv Papers to 2009
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Case Study 1

DREAMPIlace: Deep Learning Toolkit-Enabled
GPU Acceleration for Modern VLSI Placement
[Lin+, DAC’19 Best Paper Award; IEEE TCAD
2021 Donald O. Pederson Best Paper Award]

Source code release: https://github.com/limbo018/DREAMPIlace
Widely used by industry (Google, Nvidia, Intel, ...) and academia

DREAMPIace ' Public QA Notifications % Fork 125 Y¢ Star 400


https://github.com/limbo018/DREAMPlace

Challenges of VLSI Placement

I FIP -'Iter: O

¢ A classical NP-hard problem!

¢+ Have to deal with huge designs:
10M+ cells in modern ICs

¢ Plays a central role in |C design
closure as it is in the middle of
the entire design flow

» Placement determines the
interconnect to the first order

» Modern designs are
Interconnect-centric

Courtesy RePIAce from UCSD



Typical SOTA Nonlinear Placement Algorithm

min WL(e;x,y),
nin -} WL(e;x,y)

eckE

st. D(x,y) <ty
Huge development

‘v effort and runtime for

(

high-quality
placement of modern
ASIC/SoC designs

Objective of nonlinear placement

min () .. WL(e;x,y)) + AD(x,y)
S

Wirelength Density
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‘What is your Dream Placement Engine?

v" Best quality: wirelength =
congestion, timing, power, ...

v Ultrafast: placement is at the
center of entire design flow =»
faster design turn-around-time

v' Low development overhead: =
from 1 year to a month?

v Extensible: to new algorithms
and acceleration techniques

10M-cell designs
in minutes

11



DREAMPIlace Strategies

¢+ We propose a novel analogy by casting the nonlinear
placement optimization into a neural network training problem

¢+ Greatly leverage deep learning hardware (GPU) and open-
source software toolkits (e.g., PyTorch)

¢ Enable ultra-high parallelism and acceleration while getting
state-of-the-art results

12



Analogy Between NN Training and Placement

mm Z flo(xi; W), y;) + AR(W) min Z WL(e;;w) + AD(w)
Forward Propagation Forward Propagation
(Compute obj) . (Compute obj)
Data Neural Error Net Neural Error
Instance o Network N Function Instance o Network BN Function
(i, Yi) o(sw) [T f(P(zi; W), i) (€:,0) WL(;w) [ WL(ei; w)
Backward Propagation Backward Propagation

8ob] ) 80b] )

(Compute Gradient (Compute Gradient

Train a neural network “ Solve a placement

13



DREAMPIlace Architecture

Leverage highly optimized deep learning toolkit

Placement
API

. Match RePlAce
Python Nonlinear [Cheng+, TCAD18]

Nesterov’s
Method

" ! .....
OPs SONV .- .

C++/CUDA o R Ziit
RelU TR ST

DREAMPIlace architecture

Optimizer

Automatic
Gradient
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Global Placement Result Comparison

RePlAce [Cheng+, TCAD’18] DREAMPIace [Lin+, DAC'19]

 CPU: 24-core 3GHz Intel Xeon * CPU: Intel E5-2698 v4 @2.20GHz
« 64GB memory allocated « GPU: 1 NVIDIA Tesla V100
« Current state-of-the-art » Single CPU thread was used

34x speedup by DREAMPlace ~ 43X% speedup by DREAMPlace

RePlAce Threads = 1 = 10 = 20 40 RePlAce Threads = 1 40
DREAMPlace = V100 DREAMPIlace = V100

Same placement

quality of results!

104 5

104 5

10M-cell design

107 - finishes in min,

Runtime (s)
=
<
Runtime (s)

instead of 3+ hrs

100 _ 100 J

ISPD 2005 Benchmarks Industrial Benchmarks §
NS

~ 200K~2M cells

T1M~10M cells

15



Dreams for DREAMPIlace

‘
Qualit

v/ Ultrafast

Match state-of- Over 30x speedup
the-art quality 10M-cell design
DREA M 3h=»5min
Comes True

Easy algorithm innovation ?_Od'ng effOFUt}_/r -)t 2 Irigf[)n
Acceleration innovation everage exisling toolKIts

v Extensible v Low Development
Overhead
16



Beyond DREAMPIlace

‘ New Solvers

W=
Obijectives/constraints

SGD, ADAM, etc. Routability, timing, fence...
[TCAD’21] DREAMPIlace 2.0, 3.0, ...

DREAM

e % BIGGER

DREAMPIlaceFPGA Distributed computing,
[ASPDAC’22]; Gate sizing... Mixed precision,

Other CAD Problems

New Accelerations

17



Case Study 2

MAGICAL: Machine Generated Analog IC Layout

As part of DARPA ERI (IDEA/POSH) effort
Open source MAGICAL (v1.0) released

https://github.com/magical-eda/MAGICAL

18


https://github.com/magical-eda/MAGICAL

Analog IC Layout

¢+ DREAMPIlace mainly for digital IC
¢ Analog IC to interface with outside world

¢ Analog IC layout design still mostly manual
» Very tedious and error-prone
» Prior DA not as successful as that in digital IC

MAGICAL Mission:

* Develop a fully-automated analog layout system, leveraging
human and machine intelligence

* Promising results [ISPD’19, DAC'19, ICCAD’19, ASPDAC’20,
DATE’20, DAC’20, ICCAD’20, D&T°20, JoS'20, CICC'21, DAC'21,
ICCAD21, ASPDAC’'22, DATE22, ISPD'22, ICCAD’22]

19



MAGICAL Layout System Framework

MAGICAL
INPUTS

Circuit Netlist

¥

MAGICAL

LAYOUT CONSTRAINT EXTRACTOR

Pattern Matching +
Small Signal Analysis

Design Rules v v
~— ] PLACER ROUTER
DEVIGE Analytical Placement
v Multi-pin
GENERATOR P Post-Placement p A" Search
Parametric Optimization
Instances 29
Deep Learning

VALIDATION

Calibre®
DRC/LVS/PEX

EVALUATION

®

Cadence ™~ Virtuoso

ADE

®

A

)

MAGICAL
OUTPUT

GDSII Layout

\/
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MAGICAL 1.0 Hierarchical Framework [Chen+, CICC’21]

Hierarchical layout synthesis framework

Synthesis Inputs Symmetric constraints

extraction of Gm1

e

System signal flow
(optional)

Y

Block-level synthesis

Generation
time: 89.6s

Netlist

Symmetric constraints
extraction

v

Device layout
generation

& —— —

Simulation in-loop
layout synthesis

]
!

M R S R RS RS S S RS S S S S S Sy,

{

A 4
Place-and-route engine

Top-level layout integration




MAGICAL 1.0 Tapeout

[Chen+, CICC’21]

¢+ 1GS/s 3rd-order high-performance
continuous time A2 modulator

¢ Include various sub-block types
» Three integrators: one passive, two active
» Two FIR-based feedback DACs
> One comparator
» + Digital logics

¢ TSMC 40nm

¢+ SOTA performance cf. the original
manual design [IEEE SSC-L"20]

1-bit quantizer

-

r

e | INTA[ T2 [T




Comparison with SOTA CTDSM ADCs

¢+ MAGICAL 1.0 layout even slightly outperforms manual layout (SSCL'20) in
power, performance, and area

JSSC-16 SSCL-20 CICC-19 .
Weng Mukherjee! Li This work'
Architecture CTAIM CTAZIM VCO-CTAZM CTAZIM
Layout synthesized X X v v 5_ ’_,—?‘:1
Universal synthesis el
framevj’ork N/A N/A X v 351 fi r
Hierarchical flow N/A N/A X v E
Constraint generation N/A N/A X v - E * - -
Order 4th 3rd 1st 3rd o =) l l E ‘ ',
Process [nm] 28 40 40 40 N < —h O
Area [mm?] 0.1 0.034 0.01 0.033 o~ g &’ 3 |Gm1| 3 |
Fs [MHz] 320 1024 600 1024 “
Supply [V] 1112 12 11 1.2 1
Power [mW] 42 0.79 108 0.77 “
BW [MHz] 10 5 4 5
SFDR [dB] 94.2 82,6 75 80.8 L
SNDR [dB] 744 65.6 68 8 67.4
FoMw? [fJ/conv-step] 49.3 51 40.2 M AG'C AL 1 0
FoMs? [dB] 174.5 163.6 164 3 165.5
'Same schematic

3FoMs = SNDR

~~O(Month)_

[Chen+, CICC’21]

O(Min) _~

23



MAGICAL Extension: OpenSAR [Liu+, ICCAD'21]

¢+ End-to-end SAR ADC compilation

Tape-out validated
TSMC 40nm

Digital APR

MAGICAL
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Generation
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MAGICAL Extension: AutoCRAFT [Chen+ ISPD'22]

‘ ¢ Tech-agnostic FinFET layout style using primitives (w/ Nvidia)
¢ Auto custom layout generation =» Very promising results obtained

AutoCRAFT
G - - - - - - - - T I
Inputs * Preprocessing : Output
Circuit netlist F Layout planning Constraint analysis Connectivity analysis ! GDSII layout
Primitive mapping : v v :
| ! Placement e OS] —
Comsmans || 1| o || Costommonter ] —
N e : s Wirelength optimization Powerjoutlng : Hctalinsertion
____________ [ : Incremental SMT solving |> Critical net routing I t
' Optional inputs {_L | { Moo~ ] e | | Validation
| [ Hisorplansioigs .» L s : Plgltal roufer » DRC/LVS
o = | Bostacest s e e =




Case Study 3

Al for IC Manufacturability,
Reliability, Security

26



Bottleneck in IC Manufacturing: Lithography

Layout

¢+ What you see (at design) is NOT what you get (at fab)
¢+ Need to make sure design is manufacturable with high yield
¢ Litho-simulations are extremely CPU intensive

27



Lithography Hotspot Detection

I Question 1: Without going through detailed litho-simulations, can
we directly predict lithography hotspot to avoid poor yield?

¢ Our work [Ding+, ICICDT 2009 Best Paper] is among the first
to use machine learning (SVM) for litho-hotspot detection
» Very active research topic in the last 12+ years
» Inspired ICCAD 2012 CAD Contest, run by Mentor Graphics
» Meta-classification combining ML and PM [Ding+, ASPDAC’12 BPA]
» Deep neural network [Yang+, DAC’17]

~ Big data vs. small data: transfer learning, active learning, semi-_
supervised learning [Lin+, ISPD’18], [Chen+, ASPDAC’19] ... |

» Litho-GPA: confidence estimation [Ye+, DATE 2019]

28



LithoGAN: End-to-End Lithography Modeling
with Generative Adversarial Networks
[Ye+, DAC’19 Best Paper Finalist]

Question 2 (much harder): Without going through litho-simulations,
can we directly get printed images”?

29



Image Translation for Litho Modeling [Ye+, DAC'19]

&

ot
ogo Q °
128hm

Expensive Litho Simulation © e
Encode into, . 1 )
RGB - _#' | .
channels T - % - 1 This Is now a
fpm B |m (modified) image 8
1= -'.k 'q translation tas
' 256 g ) 256
¢+ Different elements encoded ¢ Resist pattern zoomed in for

on different image channels high-resolution/accuracy
30



LithoGAN Results

[Ye+, DAC'19]

' 000000006

Input Epoch 1 Epoch 3 Epoch 5 Epoch 7 Epoch 15
Model advancement progress
N I-- - - =
L —-— | i t Il - =
T == =
O |- =1 ) B — j
—1 | I | == —_ - _'
m'_m | e -
_I - | m - - -
Input LithoGAN output Input LithoGAN output

00000000

Epoch 27 Epoch 50 Epoch 80

LithoGAN is 1800x faster
than rigorous simulations,
with acceptable error (in

consultation with industry)

31



LAPD

Another LAPD

¢ To bridge design and manufacturing =
Lithography Aware Physical Design (LAPD)

» Litho Hotspot Detection
» Litho Hotspot Correction

¢+ My group has made many seminal
contributions in LAPD &3

¢ LithoGAN opens new directions with
tremendous potential

¢ Similar principles apply to other EDA
(reliability, 3D-IC, ...)

Correction

32



Bridge Design/Manufacturing for Security

‘ ¢ IC supply chains of design, manufacture, test, package, ...

Image source: https://depositphotos.com/2801291/stock-illustration-gray-detailed-world-map.html
33



Design/Manufacturing for Hardware Security

¢+ Arm race between attacking and protection
¢+ Hardware IP reverse engineering using learning techniques

¢+ Intelligent IC camouflaging [Li+, ICCAD’16, TCAD’17, HOST’17 BPA]
¢ Former PhD Meng Li won ACM SRC Grand Finals First Place in 2018

N
il

P-type Substrate

Fabrication Level

Possible
_dummy via |

/
/ I_Il
/

Layout
Modification

Cell Level

Camouflaging Cells

PN

\

Netlist Level
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Outline

¢ Introduction
¢ Al for IC

¢IC for Al
¢ Conclusion
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Photonic Al Chips

Based on optics/photonics =»

MIT News

ON CAMPUS AND AROUND THE WORLD

o o

L3
%3 FULL SCREEN

This futuristic drawing shows

programmable nanophotonic processors
> , integrated on a printed circuit board and

carrying out deep learning computing.

Image: RedCube Inc., and courtesy of the
researchers

New system allows optical “deep learning”

Neural networks could be implemented more quickly using new photonic technology.

photonic ICs

JIGHTMATTER o
/4

{’ OpenLight.
LIGHTELLIGENCE

OPTELLIGENCE lght%n
@cogniriner

Saiacadence /Ansys

ADVANCED £ QVCALYA
MICRO photonics
FOUNDRY
": GlobalFoundries
A
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Optical Computing Basics

Digital computing Analog computing
(a) AND a (b) OR coupler coupler
| DD - Y ¢ . (cos¢ —sino
. 0 In ou Sin gb COS Q5

2x2 Unitary Matmul (~100%x20 um? )

‘ | Micro-ring/
Micro-disk (‘ a ) B
y=a-x
X ><: y
Scalar Mul. (=10x10 um?)

: — WDM+PD )

= Y = LXi

- ETm o [Lightelligence] pay

it WDM-based Summation

VI _
Phase shifter

[Ying et al, Nature Comm. 2020] 37




ONN Background: Photonics GEMM

‘ ¢ DNNs: linear projection + nonlinear activation
»  Matrix multiplication is computation-intensive

¢ Photonics is good at ultra-fast linear operations

A
v

i — a7
. "

bt bt bl

1 ”'”

-2

e 3 ¢

fl

ﬁi o B e OH - ” O:j Photonic tensor unit for analog GEMM
- AN o N [MIT’s Nature Photonics’17]

Optical interference unit  Optical nonlinearity
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..........
uuuuuu

" E/O Converter
spectralfilter  detector  (Laser neuron) +

=

neural network
[Gu+, ASPDAC2020]

ONN Ckt/Arch =

MRRONN |

o ~|[Brunner+, 2016] uT
: | [Tait-zl-(,)f;:]iRep GWU
\ Bt o /| Princeton T s e 7Sy Sk b e
I N m— ———zlg 0, VAo
| E T T v Demmma ey
¢ ronmo ] s = il acxal Holylight and Lightbulb: \
u u
Area/Efficiency
, Robustness
Optical Spike Neural L bilit
D ok earnabllity
[Tait+, 2016]
Princeton a v S

Circuit-Architecture-Algorithm
CrQ-Design

Ical Reservoir Computing MZIl-based Neural Network
[Vandoorne+, NatureComm 2014] [Shen+, Nature Photonics 2017]
Ghent University MIT

[Cr]a}\g;,' VSciRep -2018]
Stanfard

[Zh\y+, NatureComm2022]

Free-space ONN MORR ONN \ o
[Miscuglio+, Optica2020] [Gu+, DATE2021]

\‘"\

WDM Comb
[Xu+, Nature2021]
Monash Univ, A?ustraalia

) ;—'—D
3 N5 |8 :
5 r
;.n s s, W, - T :_Ez
L -
wof~o PCM Xbar
[Miscuglio+, APR2020]
GWU
A =
PCM Xbar
[Feldmann+, Nature2021]
Munster, Oxford
— output ::' '.:'M :: “3
s s _.:__ o i _:_
----------- ¢ PIXEL, MZI Multiplier

[Shieflett+, HPCA2020]
Ohio Univ
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Device-Circuit-Arch-Algorithm Co-Design Stack

|
ONN Design Stack Scalability Co-Design Methodology

- Robustness 1
[ Optical Neural J

Efficiency T« ONN Architecture Search
Lrainability T '* Automated ONN Core Design
* Area-Efficient ONN Arch Design
* Robust ONN Training
* ONN Pruning/Quantization

Architecture Design

l

Model-Circuit-Device
Co-Optimization

l

[Deployment & On-Chip

* Device Exploration

. . * On-Chip Learnin
Training > S

Jiaqi Gu won ACM Student Research Competition Grand Finals 15t Place 2021

40



Case StUdy 4 FFT-based ONN [Gu+, ASPDAC’20 BPA]

¢+ Efficient circulant matrix multiplication in Fourier domain
¢+ 2.2~3.7x area reduction, no accuracy loss [O(mz N nz)] o (

y=Wz <4mPpy=F"'(F(w)o F(z))

Block-structured matrix

Input a
S

Inputs

w

k

log, k)]

_
Circulant block W
o e Btr, =4 B oy & S TR ]
[ eSSy - _— L1 [ |
A X B =2 1 I — F 3 = X B ]
o T T - - L1 Tl | ]
OFFT EM OIFFT Buitput
CT
Coupler Phase Shifter Attenuator .~ Combiner X Crossing
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Our OSNN Neural Chip Tapeout & Measurement

¢+ Experimental demonstration _ _ _
c te densitv: 225 TOPS/mm? Won the Robert S. Hilbert Memorial Optical
» Lompute density. mm Design Competition, July 2022
» Energy efficiency: 9.5 TOPS/W

Ing —*—V (

In,

In; —*—-»
Ins —*—v e bo

Out3 <

Outg <4

OUt1 < —

Outo <4

‘.
ADVANCED TE S
picko XA

The University of Texas at Austin
B inputs B unitary matrix () |l Diagonal matrix (£) [l Unitary matrix (B)

C. Feng, J. Gu, H. Zhu, Z. Ying, Z. Zhao, D.Z. Pan, R.T. Chen, Under Submission
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Case StUdy 5 FLOPS [pAC’20 BPC] [NSF Workshop’20, BPA]

‘ ¢+ ONN on-chip learning via stochastic zeroth-order optimization

T

Efficiency:
Accuracy:
Robustness:

4

[Reconfiguration Controller]

Stochastic Zeroth-Order
Optimizer

/

O

INam

JaxajdiyniAl

v
x

“x

e

|¢——— WDM-based Optical Inputs

MZl-based ONN

Demultiplexer N
'™ & Photo-dectection

WDM-based forward-only gradient estimation
Two-stage learning protocol (FLOPS+) with high accuracy
Robust learning under in situ device variations

/N ¢2

43



Robust On-Chip Learning

¢ Thermal crosstalk variations Thermal
Simulation

» Typically not considered in software training

> Time-consuming /
» Inaccurate

|

Slow X
Inaccurate x

Temperature
Temperature

¢ Built-in robustness handling on-chip
> Ultra-fast: ~1 ps

. . . ,@(\c’e 0/:91‘ (P &

> Accurate: physical noise model “Ultra-fast \| o
x Accurate /2

ONN On-chip Learning VU

Y An
in situ Thermal Variation ONN Forward M\_/ VN\-

P > b > I —_—v - AW A W —
BYAY; vy .. UV v\
NN NN\ NN AW A
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Experimental Results [Gu+, DAC’20]

¢+ Robust learning under in situ thermal variations

> 5% more accurate than hardware-agnostic software training
» 3% more robust than previous on-chip training approaches

Test Acc. w/ Crosstalk (%)

BFT PSO FLOPS FLOPS+
Methods

ONN config: 10-24-24-6 (960 MZIs)
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L2ight — Scalable On-Chip Training [Gu+, NeurlPS’21]

¢ Gradient-free methods = First-order gradient-based

¢ Can handles million-parameter ONNs
> 1000x more scalable than [Gu+, DAC’20] to handle million-parameter ONNs
» Efficiency: Multi-level sparsity to boost efficiency by 30x

¢ In-situ noise consideration for noise-resilient ONNSs

L/ .
L’ight
Interconnects ‘ — L|
GL LCU :
: o] A e TOOC LXK - XL EARRROC LXK - 200, T3
= / - - L
[0} PTC | g | Coherent : XK . . X}(_ XX ) XK U - XK_ R Coherent
H=, WDM : \Ta¥a "l Va Vs z \als \als WDM
. LA C o WL : AN o eI
o e 0, 0| o 0] | e
L {ECUN [ SlE EU | Resdout % TIC YC H0C ||y OO0 XK Readou
e o] St e X il
Lpre LiE| lof-Pe LlEli e i
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To Recap: Al for IC

Fabless

System Spex »  Process Modeling

>

Test Patterns
3
Lithography
Experiment
z

Lithography Modeling

Ty —

Layout/Mask
¥

Mask Optimization
Recipe
I

SRAF & OPC

TA0xdaster

“yrrvr Packaging and Te. Check
Mask Optimization

module test
input in[3];

endmodule




To Recap: [Photonic] IC for Al

¢+ How to build ultra-fast (light-speed) and ultra-efficient optical neural
accelerators with photonic integrated circuits
»  Software and hardware co-design is KEY

¢ FFT-ONN (ASP-DAC 2020 Best Paper Award)

¢ FLOPS (DAC 2020 Best Paper Finalists; NSF’20 Workshop BPA)
¢ PhD student Jiagi Gu won ACM SRC Grand Finals 1st Place in 2021
¢ Robert S Hllbert Memorial Optical Design Competition, July 2022

ire bondin

T :
‘ #

0 0 v i o= =
S § @ ®@ 2 &
Bl
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e 1
~ iy
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Conclusion

‘ ¢ Advance in Al algorithms/software =» Agile IC/hardware design
¢ Advance in IC/hardware =» Enhanced Al capability

Al Algorithms
Software

\J

Closing the Virtuous Cycle!
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