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Need for R&D of detector prototypes

LHC HL-LHC FCC-hh

Peak Luminosity Peak Luminosity Peak Luminosity

1-2 x 1034 cm—2s1 5-7 x 1034 cm-2s-1 5-30 x 1034 cm=2s!

Integrated Luminosity  |ntegrated Luminosity  Integrated Luminosity

300-400 fb- 3000-4000 fb-1 30 ab!
~ In 2027
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Exposure of inner tracker pixel layers to radiation levels up to:
- fluence of 2x10"® 1 MeV neqg/cm?
— Total lonizing Dose (TID) ~ 12 MGy




Motivation |
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[Tesssaens

Use of P-type Si with segmented
n*-implants —— e~ with higher mobility
are collected

Challenge: e accumulation near the
interface of SiO, (positive oxide charge) Btypefn:type

insulating layer and p-bulk —— would P

lead to short circuit channel between n* (a) p-stop (b) p-spray [

implants 3 | -ve HV Alumina/Hafnia- Al205/HfO:
Mitigation: traditional ways include p-stop

and p-spray ----- > requires additional
implantation and high temperature
process steps.

Alternatively, use of negative charged oxide like Al203 or HfO2 - p-type bulk
a) good dielectric constant ----> higher oxide capacitance p*
b) high negative charge (~ 10" - 10" cm™) (c) Alumina

Deposited using Atomic Layer Deposition (ALD) technique -ve HV
- low temperatures, high uniformity of layers, very thin layers (tens of nm) with good accuracy



Measured samples

e Fabricated at Micronova
e Starting material ——
p-type MCz 6” Si, resistivity : 5-8 kQcm, thickness: 320 pm

Processing of the devices ref:

[1] J. Ott et al, Processing of AC-coupled n-in-p pixel
detectors on MCz silicon using atomic layer deposited
aluminium oxide, NIM A 958 (2020) 162547

[2] A. Gadda et al, AC-coupled n-in-p pixel detectors on
MCz silicon with atomic layer deposition (ALD) grown thin
film, NIM A 986 (2021) 164714

[3] J. Ott et al, Characterization of magnetic Czochralski
silicon devices with aluminium oxide field insulator: effect
of oxygen precursor on electrical properties and radiation
hardness, (2021) JINST 16 P05011
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Measured samples
MOS capacitors MOSFET - circular

e Fabricated at Micronova (1.5 mm diameter) (channel width =250 um)
e Starting material ——
p-type MCz 6” Si, resistivity : 6-8 kQcm, thickness: 320 uym
e Main devices characterised for this study are:
1)  MOS capacitors and MOSFET ---> from test
structure
2) Pad Diodes
3) AC coupled devices ----- > design of PSI46dig sensor T -
(52%80 pixel matrix), 150%100 pm pitch A

AC coupled sensol Test struciure chip

.....

AC coupled sensors:

Alumina/Alumina + hafnia to
permit better capacitive
coupling of pixels
+
Thin film TiN bias
resistor



For Future collider experiments

mitigate challenges associated to increment in leakage current

DC-coupled: conductively coupled ’\ unipolar signal :

Metal contact openings
For DC contact metal metal

2 adjacent DC-pixels [not to scale]



For Future collider experiments

mitigate challenges associated to increment in leakage current

AC-coupled: capacitively coupled ‘ bipolar signal ‘

Bias resistor ~ MQ ‘

oD [, —

Metal contact openings
For DC contact

2 adjacent DC-pixels [not to scale]



Main aspects of the studies based on measured samples

Initial study : Characterization of Heavily Irradiated Dielectrics for Pixel Sensors Coupling Insulator
Applications [https://doi.org/10.3389/fmats.2021.769947] > 10 MeV proton irradiation: Accelerator
laboratory in University of Helsinki, Finland

e Study the dielectric and interface (oxide charges) : MOS capacitors, MOSFET

e [V-CV & e-TCT (proton irradiation) : Dielectric implemented in the AC-coupled pixel sensors fabricated on
MCz-Si

----> coherence studies with simulation as well

Further results on gamma irrad: —-> Characterisation of Gamma-irradiated MCz-Silicon Detectors with a
High-K Negative Oxide as Field Insulator, Jinst 2022 - - - - - > further investigation on defect
characterisation

2018,2020 samples irradiated with Co-60 @ RBI (Zagreb, Croatia)

e CV measurements of MOS capacitors: to study the concentration of oxide and mobile charges due to
gamma irradiation —-> interesting to study the surface damage

e Transfer characteristics of MOSFETs: to determine the oxide and interface traps with increase in dose.

e Edge-TCT: Electric field studies of diode and AC-coupled pixel detectors (gamma irradiated)

e |V and CV measurements of diodes and AC-pixel detectors : includes interpixel resistance studies.
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Proton irradiated MOS capacitors

Shift in the flat-band voltage from ideal condition : estimation of effective oxide charges
A‘ }b X (’o.r

;\rf = —

charge

[Measured from CV at 1 kHZ]

Higher
susceptibility
observed in
Hafnia + alumina
samples to
irradiation

Hysteresis in sweep from inversion to accumulation and vice-versa : estimation of mobile interface

traps

Qeff oxide charges : Hafnia + alumina
<< Alumina (conformity to simulated
results) - non irradiated

Higher AV}, with increasing fluence
------ > Negative charge accumulation
(as expected) ------ > More positive
voltage to compensate negative
interface charge to attain flat band
condition.

Effective oxide charges increases by
factor of ~ 2-4 with fluence upto 5e14
protons/cm?

Capacitance [nF]

2:5
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Proton irradiated MOSFET

voltage)
Shift in threshold voltage - parameter to observe negative charge accumulation in MOSFETSs.

| (drain-source) increases by ~2 orders of magnitude when irradiated upto 5e15 protons/cm? ---> expected due to negative shift in the

threshold voltage

Similar trend in shift of threshold voltage is observed in gamma irradiated samples
Drain-source voltage fixed @ 0.1 V ---> (250 micron channel length) ---> Low field regime (<< 5 V/micron)

Expected to observe high shift in threshold for high fluence irradiation

Mosfet - 10 MeV proton irradiated
T

450

——Non-irradiated: Hafnia
——Non-irradiated: Alumina
—*—5el2 p/cmzz Hafnia
——5el2 p/cmZ: Alumina
—+—5el3 p/cmz: Hafnia
‘+5e13 p/cmZ: Alumina
}+5e14 p/cm?: Hafnia | /f
‘+5e14 p/cm?: Alumina

5el5 p/CmZ: Hafnia

35

Mosfet Alumina- Gamma irradiated

500 F

—+—Non-irradiated
—+—338 kGy I &
—+—676 kGy [

+-1014 kGy |

Threshold voltage determined from the point of inflection in drain-source current versus gate voltage curve (at constant drain-source

* Gamma irrad. Using Co-60
source at the Radiation
Chemistry and Dosimetry
Laboratory at the Ruder
Boskovic Institute in Zagreb,
Croatia

Note: conversion factor not
scaled for Sl
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Proton irradiated AC coupled pixel devices - IV & CV characterization

e Full depletion voltage attainable for hafnia irradiated samples able to sustain high bias before undergoing breakdown.
e |V :total dark current increases by factor ~ 2.5.

[Measured @ -15°C] [Based on CV measurements @ 1 kHz]
450 - 1024 . ‘
—§—Al,0, + HfO, : 1e14 protons/cm? o —#— Non-irradiated
400 - +AI203 : lel4 protons/cmz lu__' —x—Al,0, : 1el4 protons/cm?
—f—Al,04 : 3e14 protons/cm @ 1023 #— Al,0, + HfO, : 1e14 protons/cm? |
—F—Al,0, + HfO, : 3e14 protons/cm? O >
| ——Al, O, : 3el4 protons/cm
—_ 350 —%—AI,0, + HfO, : 3e14 protons/cm? jon 23 2
N F— AL, + HIO, : 1e15 protons/cm? S —*—Al, 0, + HfO, : 3el4 protons/cm
g 300 F|—F—A1,05 : 1e15 protons/cm? ‘O ]‘022 —#—Al, 0, + HfO, : 1el5 protons/cm? | 3
) ©
< Q
= 250 T
c O o2
[ Y—
= 200 o
O Qo
= 150 © 10
° A
100
d
50+t g
O 4 1 1 E 1018 1 L 1L 1 1
0 200 400 600 100 200 300 400 500 600

Bias Voltage[V] Bias Voltage [V]



Transient Current Technique (TCT) TPA-TCT measurements performed
at SSD lab (CERN) & ELI (Prague)

Single Photon Absorption-TCT Two Photon Absorption-TCT
A= 700 nm A>E
: - SPA < ] - -
Si Si 8 e
" .l '.' ’..
AR lpm . * TPA excites charge carriers into

the CB
* Non-linear effect, depends quadratic
on the intensity

— main excitation around focal
point

* Red-TCT: '

* Full light absorption in ~3-10 pm depth | * 3D resolution tool to scan silicon
* optimal for e/h separation devices:

* Laser can be micro focused to < 5 pm: 2D resolution r»

Photography: Ciceron Yanez,
University of Central Florida

Y 8

* IR-TCT: )
* To mimic MIPs (continuous laser absorption) z Si
* Normally 6-10 pm 2D resolution
* Edge injection in thick devices allows a depth study

<num
ber=



IR laser characterization (Edge-TCT) Focus scan - ACpixel -Hafnia

Set-up Particulars based

\Water based cooling system
All measurements

performed at -15°C

Focus scan performed for
every sample.

IR Laser intensity kept
constant : 60 %, repetition
rate of 1 kHz : equivalent to
5-10 MIPs

Bias provided from
backplane. Total current
read out from SMU.
Signal read-out from front
bias line, Guard ring
grounded.

FWHM [m]

e G2l @4 ¥ 14 ¥ § . 3
6000 8000 10000

Laser beam size: ~ 12 ym from focus scan ’ opfcal cistance bum]
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Proton irradiated AC coupled pixel devices
- Drift velocity vs depth profiles

Unirradiated Pixel sensor

Proton irradiated Pixel sensor - 1el14 p/cm2
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Proton irradiated Pixel sensor - 3el4 p/cm2
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Proton irradiated Pixel sensor - 1el5 p/(:m2
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Drift velocity (arb.) - 300 ps x Ne h[ve+vh]
w
o

100 200 300 400 500
Depth (m) Depth (xm)

Electric field profile produced using prompt current method: Drift velocity
proportional to integrated current over rise time of the signal ~300 ps --->
charge generated within certain depth of the the scan.

° Double- junction effect (double peak) distinct at very high
fluences of 3e14 and 1e15 p/cm>.

° Double peak less prominent for high bias sweeps for 114 p/cm?
sample.

-> reason for double peak : deep level traps of charge carriers due to

irradiation.

4 Coherence study with TCAD simulation:

° Consistency in double peak due to trapping of charges observed
in Eremin model.

140001 e V=-150V_F=2el4_Eremin
B || e V=-150V_F=4el4_Eremin
200018 | |-~ V=-150V_F=1el5_Eremin
£ V=-150V_F=2el5_Eremin
5 10000 1
>
5
3 8000
&
L
S 6000 A
1
@
w
4000 A
2000 -
01— .

0 50 100 150 200 250 300
Thickness, pm

[ref: V. Eremin, E. Verbitskaya, Z. Li, Nucl. Instr. and Meth., A476 (2002) 556]
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Gamma irradiated - 2021 Co-60 irrad [RBI Zagreb]
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El - HfO, - 338 kGy- Drift velocity vs Depth

300 400
Depth (xzm)

El - HfO, - 338 kGy- Collected charge vs Depth

1.2

Normalised charge [50 ns]
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237N
' g 7 °\\‘?;}
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400
Depth [pzm]

Why electric field profiles look like
Space charge sign inversion of the
detector bulk at 1 MGy?

e Possible explanation could be
influence of positive oxide
charge in alumina ?

e Defect concentration higher than
hole concentration..possibly lead
to SCSI ?

PIXEL - A1, - 676 kGy- Collected charge vs Depth
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Coherent studies to Two-photon absorption - TCT studies at SSD lab in CERN

Non-irradiated sample: depletion from implant
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Gamma irradiated sample: depletion from backplane ohmic
contact > SCSI of the bulk (due to shallow defects)
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Summary and Outlook

e Use a-Al20s3 (negative charged oxide) as field insulator, instead of traditionally used p-stop/p-spray, to
electrically isolate segmented implants

e Study the radiation hardness tolerance of dielectrics show samples with Hafnia possess-

- improved sensitivity to fluence in MOS devices

- less prone to an early breakdown in pixel detectors.

e Possibility to study electric field properties of irradiated devices: both hadron and gamma irradiation with
SPA and TPA -TCT measurements.

Possible studies:

e Defect characterisation of MOS devices to study the impact of surface damage
- Deep-level transient spectroscopy
- Thermally stimulated current

e Study the origin of native defects generated during the thin film deposition process - origin of negative
charges remains unclear in a-Al203

e Optimisation of hydrogen impurity concentration - most common in metal oxides : possibly dependent on
precursor (hydrogen + ozone) used for ALD process ?



Back- up



Main aspects of the studies based on measured samples

Comparison based on the characterisation of devices with :
e Alumina
e Alumina + Hafnia

Hafnia ~ 2.7 times higher dielectric constant than alumina : provides higher capacitive coupling, insulation
and improved radiation hardness

Alumina thickness = 84 nm
Hafnia thickness = 62 nm

EOT (calculated wrt SiO,) reduced by ~54 nm with hafnia (high dielectric constant) compared to alumina with same
dielectric thickness ------ > enables to achieve similar capacitance and yet increase the insulation resistance

Study the dielectric and interface (oxide charges) : MOS capacitor + MOSFET devices — proton irradiation performed
at Accelerator Laboratory in University of Helsinki ----- > 10 MeV protons, Hardness factor (NIEL) : 3.87 - theoretical
value for silicon

IV-CV & e-TCT (proton irradiation) : Dielectric implemented in the AC-coupled pixel sensors fabricated on MCz-Si

----> coherence studies with simulation as well
19



AC coupled pixel devices non-irradiated
- IR laser characterization (Edge-TCT)

— 60000

1200

——Position A - close to surface
——Position B - Bulk
—— Position C - Outside region

1000 |-

Current [mV]

! ) 3'Orime s?ale [nz] : h )

e  Position A : Closer to the pixel side (in the high electric field) the signal is a superposition
of currents induced by the drift of electrons and holes

e  Position B : Laser projection into the bulk (grows), the contribution of electrons becomes
wider and at the same time the long tail due to hole drift becomes shorter.

e Position C : Negative signal observed within the guard ring region ---> grounded.
Due to ‘cross-talk’ with the active region as they share a common ohmic contact
(back-plane)
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AC coupled pixel devices non-irradiated
- charge collected vs Depth
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e Full depletion of the active thickness (320 micron) of bulk
attained at ~75 V, irrespective of the nature of the dielectric.

e Saturation of collected charge (normalised to maximum value)
observed at bias beyond full depletion in depth profiles

e Systematic uncertainty of £ 10 ym arising from laser width.
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Inference based on characterisation of

irradiated dielectrics : |
I Fit for AVth vs Fluence:

Sensitivity can be calculated by using the fit
parameters

. . I For devices operational in
AVih = AV(oxide charge) + AV (interface trapped charges)l Low field regime Sensitivity is the change in threshold voltage

with respect to the fluence

a

‘ AVj = a———
1 + bD¢

ANo/Ni = AVth x Oxide capacitance / charge

Higher sensitivity to higher doses

|
|
|
I
I |
I |
B %101t , , | 30 T Al | . .

& it ¥ Alumina J I [ [ I observed in case of hafnia samples
g 2 ~—— —+—Hafnia + Alumina “h ] I - ' K ‘
.E.“ = I _ ] ,;; 0 1—Alum|na
E_ 4t IZ I S o2 —Hafnia + Alumlnal

% | S 12
ZO -6 ‘ | Iz 15 I _§__ 1013
< 1012 1014 | g
Fluence [neg/cm?] I Wl : 71"
e AV (interface trapped charges) dominates at ! 107 107 10 10
| 1013 1014 1015| Fluence [neg/cm?]
fluences upto 5e14 protons/cm? ---> large Fluence [neg/cm?] I q
concentration of interface traps decrease mobility of | a
charge carriers ----> increase in threshold voltage ' -
e AV(oxide charge) dominates at fluences above 5e14
protons/cm? ----> leads to increase in leakage . .
current In congruous with MOS Capacitors +

simulation results (upto 5e14 p/cm?)
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