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disclaimer

* A wide range of detectors, usage
patterns, physics cases and
techniques

e Attempting completness is vane

 Some arbitrary choices were
necessary

* | take responsibility (and
apologize) for what is missing
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RPCs: state of the art and challenge

RPC vs mRPC

______RPC

# of gaps
p[€2 cm]
module
Size
Hz/cm?

o; [ps]

1
5x1010

2m?

10%
500

4 to 10s
5x1012
0.1m?

5x102
50

RPC and MRPC Common features
* Target and amplification coincide

* uniform field -> prompt signal

* Target and amplification coincide
high R electrodes -> Spark less

* Uniform electrode -> simple

* Working at atm pressure -> simple
* Min 1 mm of target for full eff.

* Thin 0.1 mm 2D localization

* Very quenching and electronegative
gasses



RPCs: increasing the rate

* rate capability saturates because
of the voltage drop:

AV =<Q> - freq - R
e Reduce R

 But below a certain value the RPC
becomes unstable

* Or reduce <Q>
* By better S/N of the electronics
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Cross-contamination with ... MPGDs

Mechanical simplicity: sRPC (surface
RPC)

e Traditional resistive electrodes
replaced by DLC coating

* Technology ported from resistive
MPGDs (1)

* Current is evacuated through the
surface which might limit the rate

* May achieve up to 10 kHz/cm2 by
implementing higher segmentation
of the grounding network (as for
the MPGDs)

Brevetto in Italia N. 102020000002359 (submitted to INFN 10 Sept 2019 - deposited to Ufficio Brevetti é Feb 2020)
INFN — "ELETTRODO PIANO A RESISTIVITA SUPERFICIALE MODULABILE E RIVELATORI BASATI SU DI ESSO."

- Matteo’s
talk on
Wednesday




Cross-contamination with ... SS devices

* A new device: single gap semi-
conductor RPC Single-gap semi-conductor RPC

 electronic carriers behave in a
completely different way than in
standard resistive plates

* Counting rate > 40 kHz/cm?
* 0.6 mm GaAs electrodes
* Resistivity 1.4x108 Qcm

* 1 MHz/cm? seems possible
* Active area 6.25 cm?




Pressurized operation

RCC (Resistice Cylindrical Chamber

* Increase the gas target density --
> better efficiency even with
thin gaps

 Geometrical quenching playing

with radii and polarization
e Eco-friendly mixtures

e Can be integrated with a drift
tube for combined precise
position/timing measurement

Shielding —



A RCC can be integrated with a tracker or calorimeter

Resistance 30 ohm

Resistance 1Me

a Out MDT

Wire MDT

Graphite

Bakelite tube

Gas gap MDT
Copper tube

insulating tube

Aluminum tube + Resistance 1Mohm

Resistance 30 ohm
Out RCC

HV RPC
— Resistance 1IMohm

O

Graphite

\ Aluminum tube

\\ Gas gap RCC
!

SiPM

- This is not to disregard sampling calorimetry with RPCs
—> It is well known that the signal amplitude is proportional
to the number of simultaneous tracks up to very high

density
- consequences for analog calorimetry
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“Thin Gap”

* When we hear “NSW” we usually think
“resistive MicroMegas”

* This is not considering the Thin Gap
Chambers, in their “small strip” flavour
e 1.4 mm wire-cathode gap
* Resistive cathodes
* optimized for rate in the NSW

* operation in a high gain mode: large saturated
signals relatively insensitive to mechanical
variations

e narrow timing spread of s?nals (time jitter)
because of a small gap and a small spacing
between adjacent wires

* Initially thought for calorimetry, they are a
staple in muon triggering @ATLAS in the
foreseeable future




Speaking about pressure ...



dE/dx resolution o/mean (%)

dE/dx and dN_/dx, take 1

dE/dx resolution around 5% are routinely reached, in excellent conditions and

with accurate calibration. It relies on truncated mean techniques, or max
likelihood.
The dependency on P has not been exploited much since the first TPC

— > N n—o.46(XP)—o'.32

Lehraus plot: 5.4% typical dE/dx resolution for
1m-bar track length. No significant change since
1983, i.e. since the first TPC

' ‘ * interestin the P term is renewed where excellent Pld is

Fanlc i Ak " . needed together with a large mass of gas (TPC-as-a-target)

® single isolated tracks

— Fitto 2021 data (25 detectors) Possibly in combination with optical readout, two issues require a
-+ Fit by Lehraus 1983 (14 detectors) fre s h I OO k

x - e suitable (modern) gas mixtures for high-P operation

1 10
effective detector length L (m * bar) * light pressure-containment vessels
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TPC characteristics and performance:

» 3D-reconstruction of tracks through SiPM plane.

» Strong BB0v topological signature (demonstrated).
» <1% energy resolution (demonstrated).

» Technology frozen, NEXT-100 under construction.

R&D towards NEXT-1Ton (fully explore inverted hierarchy)

» Develop a scheme for Ba-tagging.
Consider low-diffusion mixtures (Xe/He, Xe/CH,).

gas mass for the same pressure, lower outgassing).
New EL-structures for better scalability, stability and yield.

>
» Study detector cool down (allows replacing PMs by SiPMs, enables higher
>
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Barium tagging (find latom in 1ton of atoms!)
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BOLD concept* ERC-funded)

single Ba2* ion

(ﬂ ~Aagging

: “T———RF carpet

ion transport
in xe gas

SiPM plane for
imaging and

to reconstruct
energy

(@13) 10309319Q %@J 1| - ABiau3

Cathode (0V)

EL (+HV)

electroluminescent




DARWIN <——) the ultimate dual-phase noble-element detectors? <——> DarkSide20 and ARGO

... Connection to Cryogenics,
Y- yuﬂfcation, data acquistion

High-voltage
feecthrough ™. e

Top 3
phatosensor,..« 44
array "

" Anode

Double wall
OSHAL  wreeeeene
Gl I TP with

central dark
matter target

PTFE
reflector

* Cathode

- Bottom
photosensor
array

Goal:

> Reach sensitivities down to the neutrino floor.

TPC characteristics:

» Particle discrimination by S1/S2.
» Drift/diameter: 2.6 m / 2.6 m.
» Mass: 40 t.

R&D:

Learning from large experience with XENON
detectors and up-scale solutions. Use PMs.
Robust electrode design (up to S0kV).
Reduce backgrounds (Rn, n’s, y’s).

Achieve good liquid purity.
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many more details in L. Baudis
https://indico.cern.ch/event/994687/

DARWIN, JCAP 1611(2016)017
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Eur. Phys. J. Plus, 133(2018)131

Goal:

> Reach sensitivities down to the neutrino floor.

TPC characteristics:

» Particle discrimination by S1/S2 and pulse shape.
» Drift/diameter: 3.5 m /3.5 m.
» Mass: 51.7t.

R&D:

» Instrumented with SiPMs, in assemblies called
photodetector modules (PDMs), similar to a 3 PMT.

» Possible thanks to the discovery of low radioactivity
argon in underground CO, wells (UAr) with an activity
1400 (or more) times lower than atmospheric.

electroluminescent



» Fermi motion

» 2p2h

2p2h

2 particles

g

—=0

B —

Nuclear effects in neutrino-nucleus interactions include

» FSI (Final State Interaction) breaking up nucleus

Near Detector Suite has a magnetized high pressure TPC (NDGAr)

Role:

* Tracker for forward-going muons escaping ND-LAr.
» Target: 4r-reconstruction of CC and NC interactions (~1.5M CC evts/yr).

TPC characteristics:

* Nominal pressure 10bar, E; ~40V/cm/bar. Read out with wires.

* Tracking threshold 5MeV for protons (improvements ongoing).

*  Momentum resolution 2.7% for a typical muon sample.

» Possibility of using primary scintillation under investigation (never done
for a charge-read TPC in a particle physics application)
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* possibility of reconstruction and identification of y, n°,

TPC as a target: DUNE close detector

n, p, €, u down to about 5 MeV in 4.
* Ground-breaking results demonstrate a tracking threshold
of 5 MeV and time resolution of 1 ns in the primary
scintillation signal with just 1% CF4 addition to argon.
Instrumenting most of the cathode plane with SiPMs
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(notice the steady raise of the SiPM as a
gaseous detectore readout)




Spherical Proportional Detector
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Simple and cheap. m, [GeV/c]

Large volume (i.e., compatible with pressurization),
Single channel read-out.

Robustness.

Good energy resolution.

Low energy threshold.

Efficient fiducial cut.

Low background capability.

DLC

field degrader
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l adaptatlve field (high enough field

both close and far from the anode)  JINST3 (2008) PO9007
JINST 15 (2020) P11023

— Very suitable for rare-event searches!!

ACHINOS (v.1) ACHINOS (new version)



dE/dx and dN_/dx, take 2

dN_/dx resolution is potentially better than dE/dx. Cluster counting requires fast electronics and
sophisticated counting algorithms, or alternative readout methods. It has the potential of being less
dependent on other parameters — however certain gasses (He, Ne) are better suited than others (Ar) due

to the|r primary ionization characteristics

o~ (0-L)7" =N ‘j

* In cluster-counting mode there is a clear statistical advantage, even
taking into account a cluster identification efficiency. There is the
potential of better resolution by at least a factor 2 (theoretically)

TPCs may hit intrinsic limitations, and not all TPCs may take

advantage

 the relativistic rise is flattened out by a strict primary cluster count >
a hybrid approach (dE/dx + dN/dx) may be better suited

* long drift lengths (long. diffusion + attachment) tend to de-cluster the
primary ionization. Potential source of systematics.

» optimize the gas for longitudinal diffusion too!

However, DCs may be in a better position
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Bethe-Bloch with Cluster Counting —i.e.
what matters is separation

* Different Bethe-Bloch functions for dE/dx (by charge) and dN/dx (by
cluster counting)

* relativistic rise differs (important for particle separation)

* charge measurement is highly sensitive to secondary electrons
* more secondary electrons (deltas) at higher momenta = larger tails in Landau distribution
» (perfect) cluster counting ignores them —> relativistic rise “truncated”

* Differences depending on the gas mix: Ar vs He (fewer secondary electrons in Helium)

Ar He
S ] S o
S LDC-TPC Ar/CH//CO, (93/5/2) ] S LDC-TPC He/CO, (70/30)
\; dE/dx by cluster counting ; dE/dx by cluster counting
1.8 - 1.8 -
< 1 <
% | = |
——————————— dE/dx by charge 1 < s-w-=-=-=-- dE/dx by charge 1
1 1.6

10" 1 10 10° 10° 10" 1 10 10° 10°
momentum (GeV/c) momentum (GeV/c)



Highlights: lightness and dN/dx
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Gas envelope and wire supporting

structure sepa rated

Hope of better PID resolution using cluster

counting:

e Standard truncated mean dE/dx : 0 =~ 4.2%

e Cluster counting goal: 0 =~ 2.5%

- mandatory development of suitable FEE
for IDEA (one of the AIDAinnova Tasks: low

noise, low power,BW > 1 GHz)
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More light tracking: straws

* Ever thinner walls to reduce nX,
* Thinner tube films: 30um ->20pum -> ~10um

* Smaller diameters for better timing / occupancy
e 10mm standard, non critical w.r.t. central wire sag
* 5mm -> centering and stiffness critical

* Frameless / light frame
* Glueing together
e Overpressure to rigidify the tubes

* Charge readout for dE/dx information

Mu2e experiment

NA62 straw tube stations
_ e COMET tracker

k!

i NAG2 - COMET Phase-l | New Straw Pressurized 8 um Mylar Straws
Straw Wall Thickness i 36 um 20 um . i ] 2 Hm s
. StawDiameter . 98mm . 98mm |  48mm
Metal Deposition Cu+Au, 70nm Al, 70 nm L *Al 70 nm

Photo

CurrentStatus ~ ©  |n Operation | Under Construction | Just Developed




Straws where you do
not expect them:
DUNE near detector

* An old concept re-booted: NOMAD, i.e.
light tracking chambers with embedded
target, filling a magnetized volume >
grossly approximating a uniform active
target

STT double module
XX YY assembly
with radiator foils

FE electronics

10 boards

* H-rich target (polypropilene “radiators”)
* Tracking & dE/dx in the straws

* Possible insertion of additional target

layers for v cross-section A-dependence
) ] Radiator foils
* The concept here is: to help localize the 49 x 4 = 196
vertex (and reduce systematic errors on
cross-sections), tracking devices must

represent a few % of the target mass
49mm ‘_
~ 1.4 x 102X,



Conclusions (if any)

Trends towards

* Thinner gaps (better rate and timing), down to MPGD-like sizes
* Pressurized operations (dE/dx and target-mass driven)

» Attempt at exploiting dN/dx (mostly in drift chambers, again Pld
driven)

* SiPMs to be seen more and more inside gaseous detectors



a few references and readings

ECFA TF1 symposium (https://indico.cern.ch/event/999799/) and in particular

* Giulio Aielli on RPCs
(https://indico.cern.ch/event/999799/contributions/4204006/attachments/2235619/3790575/Aielli ECFA 2021.pdf)

* Peter Wintz and Piotr Gasik con drift chambers and straw tubes _
(https://indico.cern.ch/event/999799/contributions/4204009/attachments/2235573/3789004/PW-TF1WireChambers.pdf,
https://indico.cern.ch/event/999799/contributions/4204084/attachments/2235667/3789776/gasik ECFA 21 nobkp.pdf)

* Diego on TPCs for rare events (TPCs for rare events
(https://indico.cern.ch/event/999799/contributions/4204018/attachments/2235884/3789630/DGD_TALK.pdf)
The recent 2022 RPC workshop at CERN (https://indico.cern.ch/event/1123140/)

Workshop on gaseous detectors contributions to PID (https://indico.cern.ch/event/996326/) and

* Michael Hauschild on dN/dx
(https://indico.cern.ch/event/996326/contributions/4200962/attachments/2191650/3704305/dEdx.pdf)

Diego’s talk on the DUNE high-pressure gas Ar TPC
(https://indico.cern.ch/event/852331/contributions/4611418/attachments/2366772/4041658/Diego _Talk A
t TPC Conf LAST.pdf)

[... and references in the presentations]
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https://indico.cern.ch/event/1123140/
https://indico.cern.ch/event/996326/
https://indico.cern.ch/event/996326/contributions/4200962/attachments/2191650/3704305/dEdx.pdf
https://indico.cern.ch/event/852331/contributions/4611418/attachments/2366772/4041658/Diego_Talk_At_TPC_Conf_LAST.pdf

