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ATLAS Muon New Small Wheel (NSW) Upgrade: 
• Replace innermost Muon station in the forward region (Small Wheel) to improve LV1 trigger & maintain

good tracking at End-cap towards HL-LHC runs with high background rates (up to 20 kHz/cm2)
• Readout channels (25xold SW): MM: ~ 2.1 M,  sTGC: ~ 280 k (strip) + 46 k (pads) + 28 k (wires)pics
Detector area: ~2400 m2

Both technologies provide precision trigger and tracking for muons in the ATLAS forward region.

• For offline muon construction: 15% pT resolution at ~1TeV -> 97% segment reconstruction efficiency for 
muon pT>10 GeV with 30 μm spatial resolution
• MM: ~100 μm spatial resolution per detector plane with single layer efficiency > 90% 

• For online (Level-1) triggering: segments measurements with up to 1 mrad pointing accuracy (Phase-II 
requirement)

• Able to cope with the increasing background particle flux (pileup) as the luminosity increases

HL-LHC:  (MDT) expected frequency 
> 500 kHz / tube
-> efficiency decrease significantly

Level 1 End-Cap trigger, 
dominated by fake 
trigger events (type B e C)

Actual 
picture
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ATLAS TDR

Integration at
CERN 
2019-2021

NSW A to the cavern
12/07/21 

NSW C to the cavern

NSW A End Surface 
Commissioning
18/06/21

NSWs Underground 
Commissioning
10/21-04/22

NSWs Running in ATLAS
since 05/22

MM validation
of the ternary
gas mixture
2018-2022

2013 2019 2020 2021 2022

Module production 
2018-2020

1° sector on the Wheel 
12/2019

Surface Commissioning
2019-2021 

NSW C End Surface 
Commissioning
08/10/21
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Each of the 16 NSW sectors (Large and Small) is

composed by:

• 1 MM Double Wedge

• 2 sTGC Wedges

Each wedge (MM and sTGC) is a detector 

quadruplet.

MM detectors were build for the first time on 

O(m2) dimensions! -> Huge achievement!!!

MM quadruplet: 
2 layers to read the precision coord. and 2 stereo 

layers ±1.5° for the 2nd coordinate
• 5 stiff panels needed to form 4 gaps when coupled

• stiff panels to guarantee planarity: 

Read out panels with 3-5 pcbs based on boards 

done in industries (industrial limitation on 

dimensions), drift panel (cathode pcbs + glued 

meshes)



Features specific to ATLAS MM:

• Mechanically floating mesh: the mesh is integrated in 
the drift panel structure and not embedded in the 
anodic structure
• necessary for large area detectors (first time o(m2))
• the chamber can be re-opened for intervention

• Mesh at ground potential
• easier construction procedure
• allows separation of RO boards in independent HV sectors

• Resistive strips are overlayed to copper signal strips
• reduction of local current and of risk of discharges
• resistive layout (screen printing technique) with equidistant 

interconnections to have uniform resistance across the pcb

SummaryThe MM detectors within the ATLAS NSW
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MM Working conditions:
• conversion gap 5 mm,  amplification gap 120 µm

• stainless-steel mesh grounded: 30 μm thick wires 70 μm 

openings

• strip width 300 μm, strip pitch 425-450 μm

• HV (mesh to ground): 

• Conversion: HVdrift= -240 V, h=5mm, ED~480 V/cm

• Amplification: HVRO= o(500) V, h=120μm,  EA~42 kV/cm

• ternary gas mixture Ar:CO2:Iso 93:5:2 at HVRO= 505 V

(started with Ar:CO2 93:7 at HVRO= 570 V)

• resistivity strip ≈ 10 MΩ/cm (introduced to reduce the intensity 

of discharges)

• EA/ED ~ 90% => high mesh transparency

• Gain ~104; ions collection time ~100 ns

kapton

MPGD22
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The main issues affecting the HV stability were identified to be:
• Residual ionic contamination of boards and panels from industrial processing and handling  => improve 

the cleaning procedures

• Possible effects from mesh mechanical imperfections 

=> implement mesh polishing

• Clear correlation of currents with humidity

=> monitor humidity and increase flux

• Low resistance of resistive layer:

• marginal resistivity of the foils (resistivity dependance 

on batches) -> more in P. Iengo'talk on thursday

• strong dependence on the layout (design issue)

• Clear correlation between HV bad sectors and Rmin!

• => edge passivation

• Low quenching gas mixture! => following slide
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Plus: New HV scheme for ATLAS, 3 times more HV 
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SummaryIsobuthane enriched gas mixture
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Ternary gas mixture (Ar-CO2-Iso 93-5-2):
• Iso allows to run at significantly lower amplification voltages

• Bad HV-sectors behave better with the Isobutane enriched mixture 

• Isobuthane addition improves the sparking picture for NSW MMs

Ar-CO2-Iso @ 520 V
Good HV sections

iC4H10 allows to lower the working HV, wrt 570 V in 

Ar-CO2 having better stability, higher gain and better 

performances!

Ar-CO2 @ 570 V
Ar-CO2 Ar-CO2-Iso
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Cope with residual HV issues 

Chamber testing: for single layer fully working (elex and HV) 

we achieved efficiencies at the level of 98% via self-tracking

Even after passivation still 2-10% of weak HV channels in Ar-CO2

• Resistive pcbs -> high stable currents coherent with an equivalent resistor 

in the amplification gap of 5-10 MOhm -> weak known points of the pcbs

• Instead of having OFF sections we only loose few cm

• Resistive layout allows for Voltage drop only on small region

• Curing: pure Argon to clean the region by means of sparks (Rui De Oliveira)

1st round Feb22 on 13 ch -> 50% successful treatments -> ch at nominal HV

• Standard procedure during shutdown period: 2nd round during 

the past weeks (28 channels)

MPGD22
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NSW’s elex system is based on the VMM ASIC, which connects to the detector 

readout to provide trigger and tracking muon data to the ATLAS experiment

LowVoltage, DAQ and Elx (VMM): 

• Elx noise issue faced during wheel A commissioning -> 

Main issues identified in the 

grounding quality and in 

the power distribution!

Solutions:

• Grounding reinforced on large bases and RO pcbs

• Implementations of faraday cages on trigger elex

boards on the chamber

• Power Distribution 

• Low Voltage power supply refurbishment

• Adding output common mode filter

capacitive filter to cut the common 

mode noise (2-10 MHz)

• Improved grounding of the power modules

of the T-sensors

• Similar issue observed by sTGC, similar solutions

Before and after modifications

MPGD22



SummaryNSWs in ATLAS

10Giada Mancini (LNF INFN ) MPGD22

NSWs successfully integrated into the ATLAS Muon Central DCS 

and in the ATLAS TDAQ!

NSW employs new generation DAQ developed for the 

ATLAS Run-3: FELIX (Front End LInk eXchange) system + 

software ROD (swROD). -> Extremely tight schedule for DAQ 

commissioning (used for the first time at large-scale in ATLAS)!
• Many calibrations required for the detector and DAQ operation: from optimization

of Front-end analog circuits, correct timing of detectors to ensuring electronics

synchronization and data communication stabilities

• Experienced DAQ instabilities with Felix buffer filling and data link de-synchronization

while including more sectors or at higher (>10kHz) trigger rate.

• Integration in the ATLAS TDAQ partition since May: 

from a few sectors to entire wheel.

• 5/Jul-Nov22 -> Early Run3 started! NSW have been joining

the ATLAS data taking with nice results!
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From the beam splashes from LHC (7 May 2022) to the ATLAS Early Run 3 

started on 5 July 2022! 
Currents of MM detectors are following the LHC 

Istantaneous Luminosity amazingly! 
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• Muons reconstructed by the Inner Detector + 
Muon Spectrometer traversing the 
psudorapity region competing to the NSW 
are reconstructed in the NSW layers.

Performances of the MM layers are studied in 
terms of number of clusters, cluster dimensions
and efficiencies as a function of the HV applied
to the anode in a spatial window of 5mm wrt the 
reconstructed track.
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HV scan of cluster size and single layer efficiency
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• The New Small Wheel upgrade: largest ATLAS phase-I upgrade project. 

It aims at improving Level-1 muon trigger and tracking in the ATLAS forward region

towards HL-LHC runs.  

• With all the knowledge acquired in the past years we managed to address the main issues 

affecting the MM detectors 

• Detectors have been fully commissioned and installed in the ATLAS cavern: Milestone for 

ATLAS during LHC Long Shutdown 2! -> Good progress during Commissioining 2022

• This huge achievement has been possible thanks to the commitment and dedicated effort of 

hundreds of people! ()

• Intense and continuous efforts to understand and improve the performance of the system!



SummaryIntroductionThanks for your attention!

MPGD22
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Main purpose of wet cleaning (and 
scrubbing):
• remove remnants from the PCB 

production: dirt and solid deposits from 
the RO boards -> mostly responsible of 
“ionic component”

• remove dirt from the mesh (and trapped 
wires/chips)

Micropolishing cleaning 
procedure:
• Hard and soft brushes to 

distribute detergents 
• Accurate washing with hot 

and demineralized water
• Drying in a box with a 

ventilation system at ~40°
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The described cleaning procedure, together with the mesh polishing has been adopted at all 

sites and large improvements have been observed in HV stability behavior.

-> Production resumed BUT still in all chambers few HV sectors have problems so that 

further investigations went ongoing in parallel with the production. 

The mesh grids used for the 

ATLAS MM are not flattened 

by calendering and may 

present some imperfections, 

which can produce discharge 

if pointing toward the 

resistive strips

-> polishing with a very fine 

sandpaper to remove or 

smooth these imperfections
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kapton

Analysis of discharges showed that in many cases they are 

localized on resistive strips junctions crossing the piralux

rim, the edge of the active area (1cm wide zone passivated at 

the factory)

The resistive strips of the ATLAS MM are ink-printed on a 
kapton support 

The resistive strip layout presents interconnections with a 
defined pattern -> to have more uniform resistivity in the 
board

- 50% 

MPGD22
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The resistive MicroMegas chambers are frontier Micro-Pattern Gas Detector 
which are designed and built for the first time on large dimensions O(m2).

MicroMegas construction requirements and challenges:
• strip alignment on each layer of 36 µm of precision 

in η on positions of strips over meters
• mechanical supports to the PCB during panel 

construction
• coded masks read by contact-CCD on the 

external side of pcbs
• optical measurements (Rasnik technique) of reference masks etched on the pcb

boards
• planarity within 100 µm RMS
• technological transfer of Read-Out pcbs production with extremely high quality (pillars 

shape, resistivity homogeneity, quality of the pcb edges)
• stability against discharges with an high electric field (~45 kV/cm) on a surface of O(m2)

MPGD22
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Efficiencies of MM during surface commissioning

• Full test with cosmics on MM Double Wedges 

(DW) using the self-tracking method

• 1 MM Double Wedge (1 sector) is made of 8 

senstitive layers

• Each layer is made of 8 adiacent pcbs

(industrial limitation on dimensions) and 

16 HV sections (channels)

• Weak HV sections must be operated at lower 

amplification voltage -> clear impact on the 

efficiency

• for single layer fully working (elex and HV) we 

achieved eff at the level of 98%

• Different gas mixtures have been studied to 

cope with weak HV sections (as will be shown 

later in the talk)

• 2 weak sections at 500 V

MPGD22
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SM1 M31 (1 month at GIF, 6 mAs/cm2):

• This chamber experienced 2 sectors going bad 

under Iso-run

• Has been reopened and inspected for hydro-

carbon remnants or carbon deposit due to 

isobutane -> the issues as been identified as weak 

points (glue on the mesh, resistive blob) 

• No issues to be related to isobutane found
• both spots were removed to be investigated further

by cutting off the resistive layer

and Araldite protection applied

-> nothing found

• After reassembly the chamber was

perfectly working and tested with cosmics

• Defects lead to bad behaviour independently

to the gas mixture!

L1L3 (resistive 6.7 MOhm)

L3L2 (glue on the mesh)
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HV picture of oldA13 under binary and ternary gas mixture:

MPGD22
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