

GEM Detectors for the CMS Endcap Muon System Status of three new detector stations Piet Verwilligen for the CMS Muon Group **MPGD 2022** December 12th 2022 Weizmann Institute of Science - IL

INFN

CMS GEM group: 180 authors - 40 Institutes 17 countries 2 ½ year of work since MPGD'19

GEM Detectors for the CMS Endcap Muon System

Status of three new detector stations:

I. Installation – Commissioning – Operation – Performance of GE1/1 II. Design & Studies for Phase-2 Triple-GEM detectors in CMS

Small fraction of CMS GEM group involved with installation and commissioning on-site during COVID-19

Upgrade of the CMS Muon System

prepare CMS for unprecedented high luminosity at a hadron collider

Status of three new detector stations: Installation – Commissioning – Operation – Performance of GE1/1 II. Design & Studies for Phase-2 Triple-GEM detectors in CMS

GEM Production and Quality Test

where were we in May 2019 and what did we do up to the installation 2019-2020?

Dressing of GEMs with Electronics:

- 1. Alu Frame + Patch Pannel
- 2. GEM Electronics Board (GEB)
- 3. VFAT3 + FEAST + OptoHybrid
- 4. Cooling Plate
- 5. Aluminium Cover, PP & Services

QC7 : Front-End calibration & Test

- Connectivity & Communication tests
- Noise (ENC) measurement

GEM Production and Quality Test

CMS

quality Control 8 – The Cosmic Stand – a medium scale experiment in the lab!

Installation and Commissioning

new home in CMS and cosmic runs

2019-2020

- 144 GE1/1 chambers installed in two slots in 2019 and **2020** (*GE-1/1 @ 07-10/19*) (*GE+1/1 @ 07-10/20*)
 - Installation rate: 2 super-chambers / day
 - Before & After installation QC2 fast to check foils •
 - Fast connectivity test (w/o cooling)
 - Succesful powering, communication & calibration
 - GE+1/1 installation & commissioning during Covid •
 - In total 8 chambers replaced (HV, LV, Fibers, ...)

Integration in central CMS

- GEM DCS included in central DCS
- DCS Action Matrix Review LHC Handshake •
- DAQ stress tests configuration zero suppression •
- Latency scan with cosmics timing in VFAT3s
- Early Commissioning
 - HV Training GEM foils in CO₂ followed by Ar:CO₂
 - Extensive use DCS during HV training •
 - Full scale development new GEM DAQ Sep 2020
- Participation to Mid-Week Global Runs (MWGRs)
 - MWGR #3 (09/20) GEM first time in Global DAQ 9

• Participation to all centrally organized global runs

- First observations of unstable GBTs due to VTRx issue
 - GE1/1: 432 VTRx (3 per chamber) 5-10% affected
 - Will require intervention in LS3 (not accessible earlier)
- Rework of on-detector LV filters to lower the noise
 - Now all detectors < 1fC noise level
- Summer: Cosmic Run at Zero Tesla (CRuZeT):
 - Smooth configuration and running: 250h
 - Enough statistics to calculate efficiency, HV-scan
 - 1st trial alignment: test of procedures for collisions
 - Progress on GEM-CSC trigger (Studies, FW-updates)
 - Monitor detector over long periods
- Fall: Cosmic Run At Full Tesla (CRAFT):
 - First experience with GEMs in B-field CMS closed
 - Verified system behaviour
 - Found chambers discharging due to metallic dust reproduced in Goliath magnet tests filters in CMS
- Fall: Pilot Beams
 - Splashes, circulating beams, pp at \sqrt{s} = 900 GeV 10

2021

Operation and Collisions *Very succesful start of Run 3*

2022

Performance of GE1/1 detectors

overview of 2022 data taking

- *Early assesment* of detector efficiency in Sep 2022
 - Muon tracks reconstructed in Muon detector with $p_T > 20$ GeV/c, $0.5 < \chi^2/ndf < 2$ and with track segment in nearby CSC (ME1/1)
 - Still 15 chambers below 90%
 - 30 chambers with 90% < ε < 95%
 - More than 90 chambers with ε > 95%
- "Global Detection Efficiency" : Detector + FE/BE
 - Communication loss between FE and BE
 - We want to separate intrinsic detection efficiency and efficiency loss due to electronics
 - Important to define optimal working point per chamber
 - Updated for next iteration (see next slide)

Performance of GE1/1 detectors

overview of 2022 data-taking

- Performed HV-scan to establish individual detector working points (for 2023) now detector only efficiency
- Implemented Detector Alignment ٠

CMS *Preliminary*

GE11-M-02L1-L

<u>گ</u>100

14

 $\sqrt{s} = 13.6 \text{ TeV} (2022)$

Status of three new detector stations: Installation – Commissioning – Operation – Performance of GE1/1 II. Design & Studies for Phase-2 Triple-GEM detectors in CMS

The GE2/1 project System overview – lessons learnt from GE1/1

GE21 Detector System

- 72 chambers arranged in 2 layers (Front & Back chamber)
 - 4 triple GEM modules per chamber (8 different modules for overlap)
 - 20° chambers (small overlap) Large area 185 x 115 cm $1.6 < \eta < 2.4$
 - Button spacer in large modules to prevent "ballooning"
- Same solution as for GE1/1 (3/1/2/1 mm gaps Ar:CO2 70:30)٠
- FE: wire-bonded hybrids with glob-top -> packaged VFAT3 chip
- Plugin-card with VFAT3 chip and flex to HRS 140 connector
- Improved grounding in Readout board and Electronic board
- Each detector module has own Opto-Hybrid with GBT chip
- 50% GEM Foils produced by Mecaro (Korea) 50% CERN MPT Workshop

GE2/1

OH 4

OH 3

OH 2 OH 1 per ATCA car

- GE2/1 currently under construction
 - Installation Negative Endcap in EYETS 23-24
 - Installation Positive Endcap in EYETS 24-25 •
 - Currently 51 modules produced (144 needed / Endcap)

16

The GE2/1 project

Design modifications for discharge protection and cross-talk mitigation

	100	(simplified schematics)
Termination De-coupling	Protection	
resistor capacitor	VE	AT (low impedance ~ 100 Ω)
÷	diodes	
t	1	
-		
discharge	To protect the	
propagation	VFAT channels	

Basic principle:

- HV segments on the top: GEM protection against regular discharges
- HV segments on the bottom: protection against discharge propagation

- VFAT3 protection and HV filter for GE1/1
- Double-segmented GEM foils for GE2/1
- Presented by J.Merlin & B.Dorney MPGD 2019
- 2020 discovered increased cross-talk in double-segmented GEM foils
 - Final solution: mixed design
 - GEM1&2 double seg'ted: prevent discharge propagation
 - GEM3 single-segmented: suppress cross-talk

Upper limit at 4.12 kV/cm: P(disch prop) < 3x10⁻⁴

CERN H4 test beam

CMS Preliminary

10x10 cm² triple-GEM

Divider current 740 µA

5 MΩ high voltage divider 150 GeV muons

250 µm strip pitch

Ar-CO₂ 70%-30%

(มา 115

aigma sigma

Residual 100

s = 81.3 ± 0.3 um

10x10 cm² triple-GEN 250 um strip pitch

Divider current 740 uA

MQ high voltage divider

Ar-CO₂ 70%-30%

50 GeV muons

The GE2/1 project Integration: <u>Test-beam</u> & Demonstrator

- Motivation
 - Test GE21 and ME0 chambers with final electronics
 - Measure efficiency, spatial resolution Phase-2 chambers
 - high rate (10-100 kHz L1A rate) test with π -beam
 - Test 9x9cm² Tracking GEMs 250um pitch (σ = 75um) with VFAT3
- Participated in RD51 Test Beam October 2021 & May 2022 at SPS H4
 - 150 GeV/c low-intensity μ (large beam spot) and high-intensity π (small beam spot)

The GE2/1 project Integration: Test-beam & Demonstrator

GE2/1 Demonstrator Motivation

- Exercise detector integration & mechanical installation tools
 - Verify detector envelope \rightarrow found protruding RPC gas pipes (2008)
- Gain operational experience: DCS & DAQ, DQM, ...
 - Experience with new foil design (double segmented) in GEM1 & GEM2
 - Verify grounding, noise levels, measure dead channels, cross-talk

CMS Preliminarv

Ñ N N N N N 0.8

Confirm GE2/1 performance in CMS environment: ε_{i} , noise, bkg rate

- GE1/1 slice test taught us valuable lessons that we were able to integrate in final GE1/1 chambers
- GE2/1 prototype chamber with final electronics improved w.r.t. 2019 and 2020 prototypes
- Installed November 2021

CMS Preliminarv

Cosmic Ray Muon Data 2022

foster GE1/1 experience

The MEO detector

Designing Triple-GEM detectors for the highest rates **Requirements:**

New High-Granular Calorimeter (HGCAL) CMS

- 6-Layer stack of Triple-GEM
 - Install behind HGCAL (complex environment)
 - 18 stacks (20°) for each endcap
 - Coverage: $2.0 < \eta < 2.8$

- 97% module efficiency
- < 500μ rad resolution
- 8-10 ns time resolution
- $\leq 15\%$ gain uniformity
- Work in high-rate environment: 150kHz/cm^{2*}
- Survive harsh radiation environment: 7.9C/cm^{2*}
- Discharge rate that does not
- *impede performance or* operation
- * updated w.r.t. CMS Upgrade Technical Proposal & Muon Upgrade TDR

The MEO detector

Rate capability limitations due to large-area irradiation

ADC Channel

GEM Rate capability studied for decades – on different geometries and detectors

- Common procedure: soft X-rays focussed on mm²
 - reaching very high X-ray flux
 - Gain stable above MHz/cm²
 - Proves efficient space charge evacuation
- However: low Ion current flowing through R_{prot}
 - As consequence negligible voltage drop and high rate capability up to 100MHz/cm²
 - Low ion current not representative for real experiment with global irradiation on 3000cm²
- Gain Loss already observable on 10x10cm² detector with global irradiation
 - Compensation of gain by countering voltage drop increasing operating voltage

The ME0 detector

ME0 in

segment

Radially

22

Optimalization of ME0 GEM Foil HV sectors

- Expected Particle Rate on ME0 is Exponential
 - Highest rate: 150kHz/cm² Lowest rate: 2kHz/cm²
 - Optimization of horizontal sectors would depend on functional form of background chosen – which is only known from simulation - Uncrt?
- New HV segmentation paradigm: Radial sectors
 - Rate on each HV sector is equalized => also current through protection resistors will be equalized
 - Allows for uniform Gain compensation by ΔV on GEM foils
- Prototype with radial HV segments validated with beam
 - Excellent efficiency However Large # segments => Large Dead Area

The MEO detector

Adoption of "Random hole" sectors technique during GEM Foil Etching

- Traditional segmentation (horizontal)
 - leads to dead area of A= 200 μ x ℓ
- Radial segmentation leads to a variable distance hole-to-hole
 - Dead area extends to A = 500 μ x ℓ
 - Test beam observes Efficiency drops < 50% at segmentation line
- New technique Rui / CERN MPT workshop: "Random hole"
 - GEM foil perforated everywhere
 - Subsequent removal of 200um Cu strip
 - creates holes w/random Cu border around

Tested in testbeam – *Efficiency drops in 'dead area' to 95%*

- October '21 with 10x20 prototype chamber (4 segments)
- May '22 with full ME0 prototype
- R&D and TT required

95%

Antonello Pellechia

x (mm)

0.0

The MEO detector

Rate capability tests with X-rays

Gain

Gas

Verify Validity of new ME0 design and Gain compensation with asymmetric X-ray irrad

- Global X-ray irradiation entire detector + Intense X-ray irradiation of highest η partition of MEO
- ME0 detector without HV-Filter
 - Correct behaviour of filter on rate-capability can only be established with uniform irradiation of chamber
- Measure gain on <u>all</u> η partitions ٠
- All partitions lose gain in same way ٠
 - consequence of radial segmentation currents are running now along entire detector ٠
- Compensation demonstrated up to 10MHz/sector:

(cfr: CMS: expect 1.7 MHz/sector – 200 e-)

increase V on each electrode according to current flowing through it until desired ΔV reached ٠

The ME0 detector

Rate capability tests with γ -rays at GIF++ --- Gain

- Goal 1 :: Demonstrate Compensation
 - Uniform $\phi =$ test HV filter with realistic current
 - Tested 25.5k, 51k, 100k all ok for compensation
 - Current required from PS for 100k = 4 x Current 25k
 - ME0: High Power version of A1515TG: 3ch w/ 3mA

Goal 2 :: Measure Efficiency under irradiation

The ME0 detector

signal

Rate capability tests with γ -rays at GIF++ --- Efficiency

- Tracker with 3 Triple-GEMs (400um pitch) VFAT3 & CVP13 BE
 - Reconstruct good tracks with 3 x-y points
 - However does not allow alignment (need 4th detector)
- Good Track reconstruction in background environment
- **Clustersize increases with background** (add γ hits in μ cluster)
- Efficiency Measured > 95% without beam (blank segmentation)
- Efficiency Measurement with background requires bkg subtraction —

- γ hits are added to μ cluster leading to worse spatial resolution
- Random γ hits matched to muon track early γ hits creates deadtime for late μ hit
- Intrinsic limitation of current design \rightarrow need to reduce strip size of MEO at highest rate

Conclusions

the work is not finished yet

The first Triple-GEM Station in CMS – GE1/1

- Installed & commissioned during LS 2 (2019-2021)
- Shakey start with discharges due to B-field and increased background
- From middle of august running stably at highest luminosities
- First performance presented today

The Phase-2 upgrade of CMS with Triple-GEM: GE2/1 & ME0

- Lessons learnt from GE1/1 lead to improved design Phase-2 detectors
- *GE2/1* & *MEO* detectors tested with final electronics in test beam 2021
- *GE2/1 in production First disk to be installed in Winter 2023*
- MEO design being adapted and tested for the high expected rates
 - Several improvements implemented now knocked with head on Front-End limitations
 - Will continue to improve design to mitigate maximally high rate effects

Status of three new detector stations: Installation – Commissioning – Operation – Performance of GE1/1 II. Design & Studies for Phase-2 Triple-GEM detectors in CMS III. Back-up

Upgrade of the CMS Muon System

500

2036 2038 2040 2042

Preliminary (optimistic) schedule of HL-LHC

prepare CMS for unprecedented high luminosity at a hadron collider

In the High-Luminosity Phase of the LHC (HL-LHC) (2029 - 2042) LHC will provide collisions at 5 – 7.5 times the original design luminosity (1E34cm⁻²s⁻¹)

- Integrate 3 ab⁻¹
- HH, %-level measurement of Higgs-boson couplings

To cope with the high rate Muon System upgrade:

- Improved electronics for existing CSC, DT & RPC:
 - Readout w/ high BW, exploit σ_t
 - Longer trigger Latency 12us
 - Higher L1A rate: $100 \rightarrow 750$ kHz
- **Gaseous Electron Multiplier (GEM) detectors for** precise (150um) muon reconstruction and triggering in B-field and high background (few kHz/cm² – 100 kHz/cm² rate)
 - $GEx/1: 1.6 \le \eta \le 2.4$ and ME0: $2.0 \le \eta \le 2.8$
 - 432 chambers, ~150 m² 1.2M channels

- Improved Resistive Plate Chambers (iRPC) for fast triggering (1.5-2ns) and redundant tracking (<1cm) in medium background (< \sim 1kHz/cm²)
 - RE3/1 and RE4/1: $1.8 \le \eta \le 2.4$ 72 chambers, ~100 m² 7k channels
- Gas recuperation plant + search for GWP friendly gas mixtures (for operation > 2033)

Motivation for GEM Upgrade CMS

the birth of the GEM project in CMS

- **Good Bending Angle measurement possible** in Endcap 1st & 2nd muon station (feel B-field)
 - $1^{\rm st}$ & $2^{\rm nd}$ Install Detectors with good spatial σ
 - 3rd & 4th muon station with *i*RPC detectors

- GE1/1 is early Phase-2 upgrade: ٠
 - reduce Trigger rate by using $\Delta \phi$ (GEM,CSC) before track trigger becomes available in Run 4
- Bending Angle GE2/1 + CSC \rightarrow displaced muon triggering
- Improve local trigger primitives CSC + GEM/RPC
 - improve Muon Track Finder Trigger
- Increase redundancy where background is highest

CONCEPT

30

CMS GEM (GE1/1) Detector

GE1/1-V

(2014)

GE1/1-

(2010)

GE1/1-II

(2011)

GE1/1-III

(2012)

GE1/1-IV

(2013)

GE1/1-VI

(2015)

GE1/1-VII

(2016)

GE1/1-X

(2017)

- Construction Technique: Stretching, no glue
- Gap config: 3/1/2/1 mm Ar:CO2 70/30 Gain = 20,000
- Spatial Resolution < 300 urad
- Rata Capability up to 10 kHz/cm²
- Two types of Chambers:
 - Long ~4000 cm² ($|x b_1/b_2$: 121cm x 23/45cm)
 - Short ~3000 cm² ($|x b_1/b_2$: 106cm x 23/42cm)
- All Chambers have 24 $\eta x \varphi$ sectors 3072 R/O channels
 - Each sector 128 strips read by VFAT3
 - Chamber has 8 η partitions
- Strip pitch 600um 1200 um (460 urad)

[Specification / Parameter	GE1/1
	Detector technology	Gaseous detector; micro-pattern gas detector (MPGD)
	Charge amplification element	GEM foil (triple, cascaded, tensioned at $\approx 5 \text{ N/cm}$)
	Number of chambers in overall system	144 (72 in each endcap)
	Chamber shape (active readout area)	Trapezoidal; opening angle 10.15°
	Active area overlap in adjacent chambers	2.6 mrad (corresponds to 5.7 readout strip pitches)
	Short chamber dimensions (active vol.)	L: 106.1 cm (center line), W: (23.1 - 42.0) cm, D: 0.7 cm
	Long chamber dimensions (active vol.)	L: 120.9 cm (center line), W: (23.1 - 44.6) cm, D: 0.7 cm
	Total chamber thickness	D: 3.5 cm
	Active readout area	0.345 m ² (short ch.); 0.409 m ² (long ch.)
OPTICAL BOARD	Active chamber volume	2.6 liters (short ch.); 3 liters (long ch.)
	Radial distance from beam line	130.2 cm (at inner edge of active readout area)
	Geometric acceptance in η	1.61 - 2.18 (short ch.); 1.55 - 2.18 (long ch.)
	Signal readout structure	Truly radial readout strips
	Readout strip dimensions	230 μ rad angular strip width; 463 μ rad angular pitch
READOUT BOARD	Number of η -segments in readout	8
& GEB	Number of readout strips per η -segment	384
GEN FRAVE (OUTER)	Number of readout strips per chamber	3,072
GEN FOILS	Counting gas mixtures	Ar/CO ₂ 70:30 or Ar/CO ₂ /CF ₄ 45:15:40
	Nominal operational gas flow	1 chamber volume per hour
	Number of gas inlets	1
	Number of gas outlets	1
	Nominal HV applied to drift electrode	3200 V (Ar/CO ₂); 4000 V (Ar/CO ₂ /CF ₄)
	Nominal operational gas gain	$1-2 \times 10^4$
DRIFT	Demonstrated rate capability	100 MHz/cm^2

CMS GEM (GE1/1) Electronics

- VFAT3 Front-End ASIC
 - 128 ch 320 MHz >12.5us buffers
 - Trigger data = OR 2 strips
- **GEB = GEM Electronics Board** (8 layer, 1mm)
 - 2 PCBs to avoid long track lenghts
 - 1 power, 1 shield , 1 GND, 2 signal
- **FEAST DC-DC convertors** (#9, 1.2V, 2.5V, 3.2V)

- 3 x Tracking & slow control (VTRx = bi-directional OL) •
- 2 x Triggering (VTTx = mono-directional OL)

Opto-Hybrid (OH) mezzanine card

3 Gigabit GBTx chips

• Only to send trigger data

•

GE1/1 detector with 2 GEBs, 1 OH, 24 VFATs, 5 Ols, 10 FEASTs

GEM Detectors for the CMS Endcap Muon System Status of three new detector stations Piet Verwilligen for the CMS Muon Group MPGD 2022

INEN

CMU 165kg

WE&

1/3/3

MERRE-1

December 12th 2022 Weizmann Institute of Science - IL