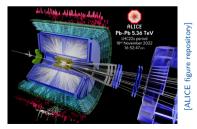
Gain Calibration of the Upgraded ALICE TPC

Philip Hauer

12th December 2022

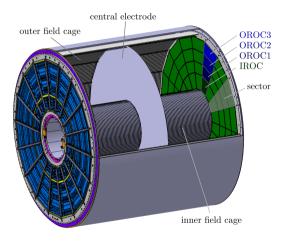
FSP ALICE

Erforschung von Universum und Materie


[ALICE figure repository

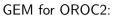
INTRODUCTION – ALICE

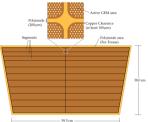
- ▶ A Large Ion Collider Experiment (ALICE)
- One of the four large experiments at Large Hadron Collider (LHC) at CERN
 - Dedicated to heavy-ion physics
 - ▷ Usually Pb-Pb
 - Huge multiplicities
 - ▷ Up to 20 000 tracks per collision
 - Reconstruct all tracks
 - Identify all particles
- ▶ Time Projection Chamber (TPC)
 - Gaseous detector
 - Main tracking and PID device



TPC

INTRODUCTION – TPC


- Cylindrical TPC
 - 5 m outer diameter
 - ▶ 5 m long
 - ▶ Filled with Ne-CO₂-N₂ (90-10-5)
- Upgrade: Replaced MWPC-based amplification stage by GEMs
 - ▶ 50 kHz Pb-Pb interaction rate
- Read out of induced signals on 2D pad plane
- A- and C-side split by central electrode
- In total 36 sectors, subdivided in IROC, OROC1-3

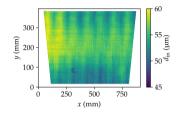



[ALICE TPC Collaboration – JINST 16 – 2021]

INTRODUCTION – GEMS IN THE ALICE TPC

- ► For ALICE TPC: Large-area GEM foils are used
 - Divided into several high-voltage segments
 - Stability cross to prevent sagging
- \blacktriangleright lon backflow suppressed to $< 1\,\%$
 - Important to minimise space-charge distortions
- $\blacktriangleright~\sigma_{\rm E}/E < 14\,\%$ at $^{55}{\rm Fe}$
 - Important for particle identification
- R&D investigation
 - ► First GEM TPC: FOPI [B. Ketzer et al. NIMA 869 2017]
 - ► TDR for ALICE TPC [ALICE TPC Coll. CERN-LHCC-2013-020]
 - Stack of four foils: S LP LP S
 - Effective gain pprox 2000
- \Rightarrow Continuous operation possible

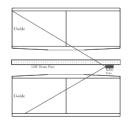
[ALICE TPC Collaboration - JINST 16 - 2021]

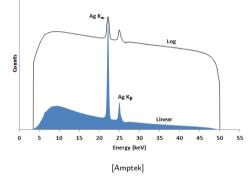

INTRODUCTION – TIMELINE OF THE UPGRADE

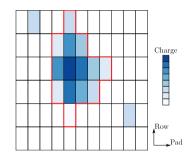
Calibration of the ALICE TPC

- ▶ Measured charge \propto deposited energy (dE/dx)
- \Rightarrow Constant gain required
- But: Gain variations expected
 - Electronic gain in FECs
 - Mechanical imperfections
 - Hole size variations
 - Sagging of foils
 - Charging-up of GEMs
 - Temperature and pressure variations
- ► Calibration required!
 - X-Ray tube
 - ▶ ^{83m}Kr

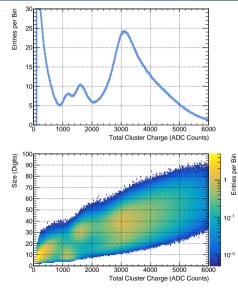
Hole sizes of a GEM foil:



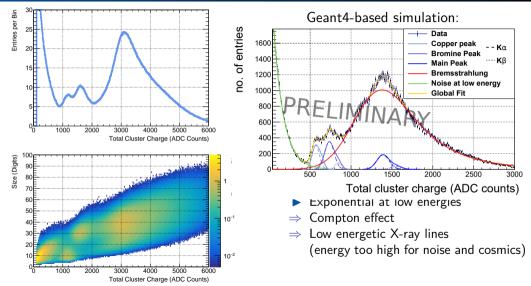

- Already during pre-commissioning: Measurements with X-ray tube
 - Only with two sectors simultaneously
- Data very useful
 - to adjust high voltage settings
 - to investigate stability at high loads
 - ▶ to calibrate TPC
- Before installation of ITS: Another measurement campaign with full TPC

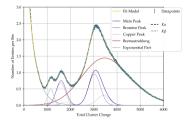


Mini-X Silver (Ag) X-Ray Tube Output Spectrum

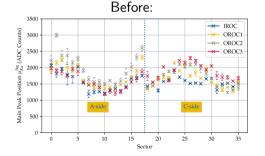


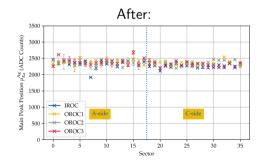
 Characteristic Ag-lines on top of bremsstrahlung background


Expectation: No tracks but charge "blobs"

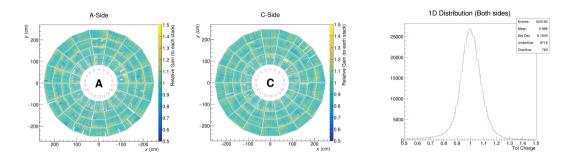

- Implemented a dedicated 3D cluster finder
- Analyse the measured data

- ► Four prominent regions:
 - Main peak at \approx 3000 ADC
 - $\Rightarrow K_{lpha}$ and K_{eta} from Ag X-ray tube
 - ▶ Fluorescence peak at ≈ 1100 ADC
 ⇒ Origin: Copper (GEMs)
 - ► Fluorescence peak at \approx 1600 ADC \Rightarrow Origin: Bromine (vessel material)
 - Exponential at low energies
 - \Rightarrow Compton effect
 - ⇒ Low energetic X-ray lines (energy too high for noise and cosmics)

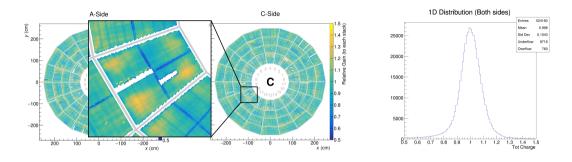



X-RAY – COARSE GAIN EQUALISATION

Developed fit model


- Main peak used for coarse gain equalisation
 - Spectrum for each stack
 - Stack-by-stack gain variations
 - ▶ Was used for tuning HV settings
 - Duriform potential on GEM1T

Philip Hauer

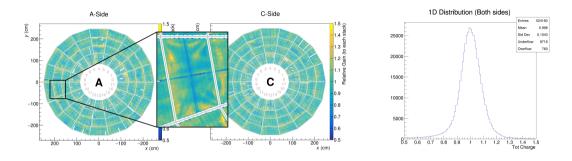

X-Ray – Pad-by-Pad Gain Map

- Spectrum for each pad
 524160 pads
- Remarkable structures

Software-wise correction

X-RAY – PAD-BY-PAD GAIN MAP

Spectrum for each pad ▶ 524160 pads


Remarkable structures

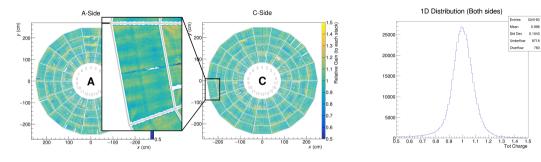
Software-wise correction

Philip Hauer

Sagging

X-Ray – Pad-by-Pad Gain Map

Spectrum for each pad
 524160 pads

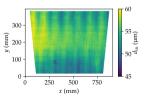

Software-wise correction

Remarkable structures

Sagging
 Wrightlage

Wrinkles

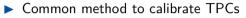
X-Ray – Pad-by-Pad Gain Map



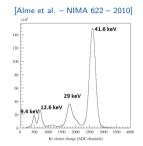
Spectrum for each pad
 524160 pads

Software-wise correction

- Remarkable structures
 - Sagging
 - Wrinkles
 - Hole-size distribution


GEM2 OROC3 in C09:

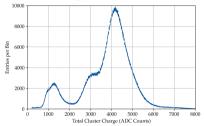
Commissioning – Krypton Calibration


Krypton spectrum:

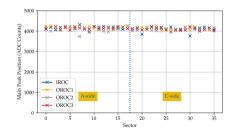
- Well known spectrum
- Was already done in previous runs
- \blacktriangleright ⁸³Rb decays to ^{83m}Kr
 - Rb has a rather long half-life (86 days)
 - Normally implanted into polyimide foil

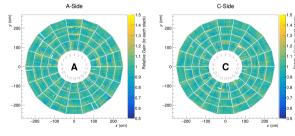
Two energy levels

- ▶ 32.2 keV transition internal conversion (releases a shell electron)
- ▶ 9.4 keV transition is internal conversion (95 %)

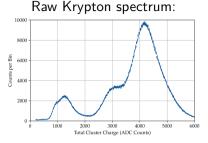


Krypton decay scheme:

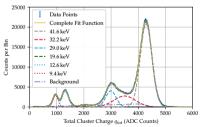



KRYPTON – STATIC GAIN CALIBRATION

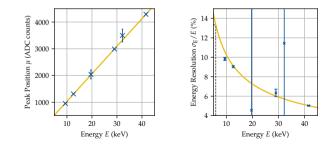
Raw Krypton spectrum:



- Main peak used for:
 - Coarse gain equalisation
 - Pad-by-pad gain map
- ▶ Similar results to X-ray measurements

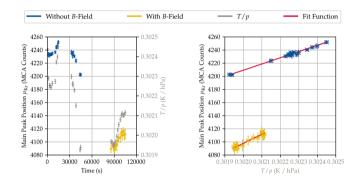


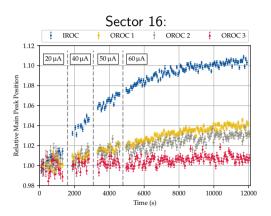
STATIC GAIN CALIBRATION – APPLICATION


Corrected Krypton spectrum:

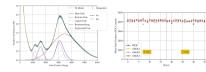
- Apply pad-by-pad gain map to data
- Energy resolution (main peak) improves significantly
 - \blacktriangleright Raw spectrum: $\sigma_{\rm E}/E = 11.2\,\%$
 - Corrected spectrum: $\sigma_{\rm E}/E = 5.0\,\%$

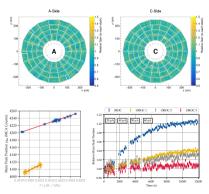
•
$$\sigma_{
m E}/E$$
 at ⁵⁵Fe $=13.3\,\%$


 \blacktriangleright Requirement: $\sigma_{
m E}/E$ at ⁵⁵Fe < 14 %


Calibration – Temperature and Pressure

- \blacktriangleright Temperature T
 - Sensor in TPC
- \blacktriangleright Pressure p
 - Sensor in cavern
- ▶ Gain depends on T/p
- ► 32 measurements
 - ▶ Time span ≈ 30 h
 ▶ With ^{83m}Kr
- With and without B-field
- \blacktriangleright Correlation of T/p with main peak position
- ▶ Different behaviour with vs. without *B*-field
 - Origin not clear (yet)


CALIBRATION – CHARGING-UP OF GEM FOILS


- 2 month break in pre-commissioning due to COVID
 - TPC was not operated
- ► Afterwards: X-ray irradiation
- IROC: Clear exponential behaviour
 Charging-up
- Longer time-constant in other GEM stacks
 - ► X-ray tube in middle of TPC
 - Smaller rate in outer GEM stacks

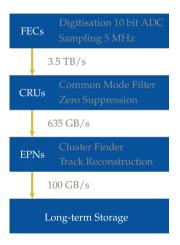
SUMMARY AND OUTLOOK

- Upgrade of the ALICE TPC
 - Replaced old amplification stage by GEMs
 - Fully operational with continuous readout
 - "Movies instead of pictures"
- Calibration of
 - Static gain variations
 - Coarse gain calibration
 - Pad-by-pad gain map
 - Dynamic gain variations
 - > Temperature and pressure
 - Charging-up
- Pb-Pb data taking campaign next year
- Until then: Further calibrations
 - ▶ E.g. removed skirt electrode

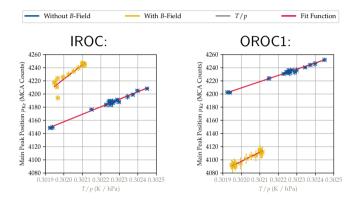
Thanks for your attention!



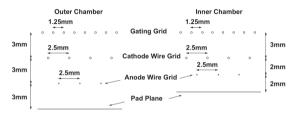
Backup



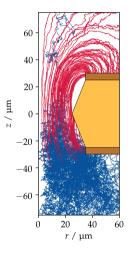
FECs and Data Processing



- New FECs designed and installed
 - New ASIC: SAMPA
 - Preamplifier, shaper and 10 bit ADC
 - Continuous sampling with 5 MHz
- ▶ In total 524160 readout channels (pads)
 - 3276 FECs needed
 - ▶ 3.3 TB/s
- \Rightarrow Compress data online


WITH VS. WITHOUT B-FIELD

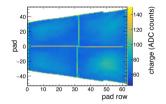
- Shift of main peak position
 - With vs. without *B*-field
- ► Shift upwards in IROC
- Shift downwards in OROC (not only OROC1)
- Origin not clear
 - Idea: Threshold effects due to noise cuts
 - Under investigation

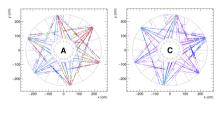

MWPCs vs. GEMs

[Alme et al. - NIMA 622 - 2010]

- Ions are captured by gating grid
- Electrons can not pass
- ► Has to be opened and closed
- Max. interaction rate $\approx 3 \, \text{kHz}$

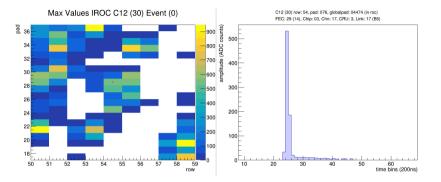
WHY NE-CO2-N2?


Gas	Eff. ionization	Number of electrons per MIP		Drift velocity	Diffusion coeff.		
	energy W_i	$N_{\rm p}~({\rm primary})$	$N_{\rm t}$ (total)	$v_{\rm d}$	D_{L}	D_{T}	$\omega \tau$
	(eV)	$(e cm^{-1})$	$(e cm^{-1})$	$(\text{cm}\mu\text{s}^{-1})$	$(\mu m/\sqrt{cm})$	$(\mu m/\sqrt{cm})$	
Ne-CO ₂ -N ₂ (90-10-5)	37.3	14.0	36.1	2.58	221	209	0.32
Ne-CO ₂ (90-10)	38.1	13.3	36.8	2.73	231	208	0.34
Ar-CO2 (90-10)	28.8	26.4	74.8	3.31	262	221	0.43
Ne-CF ₄ (80-20)	37.3	20.5	54.1	8.41	131	111	1.84


[ALICE TPC Collaboration – JINST 16 – 2021]

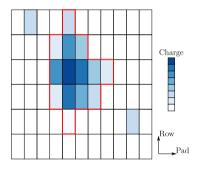
- \blacktriangleright High ion mobility \Rightarrow lons quickly get removed from system
- ► No ageing effects expected
- ► N₂: Less primary discharges

INSTALLATION STATUS – PULSER AND LASER

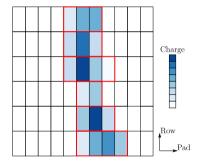

- Upgraded calibration pulser system is installed
- Voltage pulse injected on GEM4 bottom
 - Signal induced on all pads (capacitive coupling)
 - Used to study timing and shaping for each channel
- Laser system is re-installed
- Artificial tracks created inside TPC
- ▶ In addition: Signal from central electrode
 - Used to measure drift velocity of electrons

[ALICE TPC Collaboration - JINST 16 - 2021]

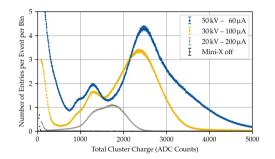
ION TAIL



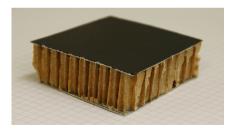
▶ Long tail: Probably due to backdrifting ions


- Created between GEM4 and pads
- ► To be investigated

3D box cluster finder:

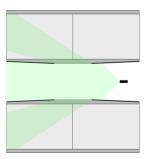


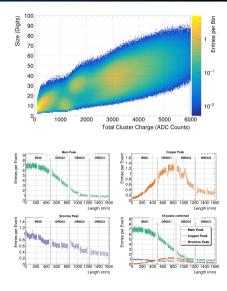
"Normal" cluster finder:


- Reduced Mini-X voltage
- Peak vanished at 20 kV
- Clear indication that characteristic lines are responsible

$$\begin{array}{l} \bullet \quad E_{K\alpha}^{\mathrm{Ag}} = 22 \ \mathrm{keV} \\ \bullet \quad E_{K\beta}^{\mathrm{Ag}} = 25 \ \mathrm{keV} \end{array}$$

BROMINE PEAK IDENTIFICATION

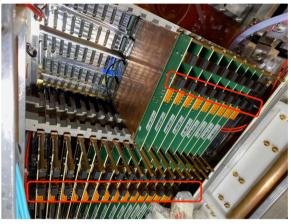




Philip Hauer

COPPER PEAK IDENTIFICATION

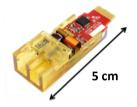
- Is only visible on irradiated side
- Radial distribution fits to irradiated GEM area
- Small sizes due to small diffusion



INSTALLATION STATUS – VTRX FAILURES

[ALICE TPC Collaboration – JINST 16 – 2021]

- ► Front-end card (FEC)
- In total: 3276 FECs for whole TPC
- ▶ 1 VTRx per FEC

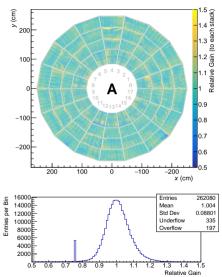

[Christian Lippmann - Personal Comm.]

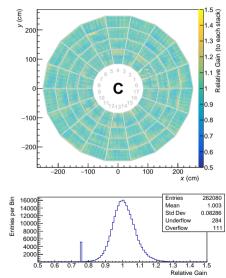
► FECs in an IROC

INSTALLATION STATUS – VTRX FAILURES

- Communication problems with FECs
- Problematic component: VTRx optoelectric transceiver
- Received signal strength indicator (RSSI) decreases with time
 - ▶ First seen by CMS HCAL (operational since 2018)
 - Confirmed by ALICE ITS (operational since 2020)
- ▶ Affects approximately 50 % of all modules
- Becomes problematic (link failures) in up to 20 % of installed modules

INSTALLATION STATUS – VTRX FAILURES


- Reason: Epoxy not cured well during production
- If it gets warm \Rightarrow Outgassing
- Fibre connection becomes less transparent
- RSSI decreases
- How to overcome this issue?
 - Post-curing not feasible (typical: 120 °C for 2 h)
 - Regularly cleaning impossible
- Add cooling fins to system
 - Installation possible without unmounting FECs
 - All FECs equipped with fins
 - Stable operation afterwards


[Christian Lippmann - Personal Comm.]

Full Gain Map

A-Side

C-Side

Philip Hauer

Gain Calibration ALICE TPC

32/17