## **Commissioning of a hadron blind detector for dielectron measurement in pA reactions at J-PARC**

#### Koki KANNO for the J-PARC E16 Collaboration

RIKEN

## Outline

- ✓ J-PARC E16 experiment
- ✓ hadron blind detector (HBD)
- ✓ HBD commissioning
- ✓ results
- ✓ conclusions and outlook

2

## **J-PARC E16 experiment**



✓ 6 mod. installed for the commissioning run

• 26 mod. for the final design

12/12/2022

Lead-glass calorimeter

## Hadron blind detector (overview)

#### ✓ windowless and mirrorless proximity focus Cherenkov detector

- originally developed by the PHENIX experiment
- utilized for eID
- Triple GEM stack + Csl photocathode
- ionized electrons swept into mesh
- pad readout+APV25 hybrid card of SRS
- ASD connected to the bottom GEM for a trigger signal



## Hadron blind detector (GEM)

#### ✓ 30x30 cm2 GEM foils are used for the HBD

- made by Japanese company
- 3 foils per stack, 4 stacks per module
- 6 modules = 72 foils installed for the commissioning

### ✓ Csl is evaporated on the top surface of the top GEM

• evaporated by Hamamatsu







## Hadron blind detector (front-end)

#### $\checkmark$ two types of readouts are used for the HBD

- pad readout with APV25 hybrid cards of SRS (1400 ch/module)
- the bottom surface of the bottom GEM with ASD for the trigger signal (36 ch/module)

pad readout board



**APV25 hybrid card** 

**Incident electron** 

### **Spectrometer commissioning**



#### ✓ signals are samples with 41.67 MHz (24 ns/cycle)

• with APV25 hybrid card of SRS

#### ✓ fitting w/ a function based on apv25 circuit constants

• a waveform template obtained with a test pulse does not reproduce well



## **Analysis (clustering)**

✓ the side length of a hexagonal pad is 10 mm and it is smaller than the circular image of the Cherenkov photons

• circular image is φ34 mm when incident angle is 0 degree under the zero magnetic field

#### ✓ the neighboring fired pads are defined to belong to the same cluster

• a fired pad is defined to have a greater signal than  $4\sigma$  of electric noise



cluster charge: sum of charge of fired pads in a given cluster

cluster size: the number of fired pads in a given cluster

## **Gain calibration**

✓ gas gain of a triple GEM stack is measured with scintillation photons induced by incident charged tracks

• radiator and working gas of CF4 is a good scintillator

#### ✓ exponential curve at low amplitudes attributed to scintillation photons



- ✓ a recirculating gas system is implemented to reduce gas consumption and running costs
- ✓ photon wavelength of interest ranges VUV region (100—200 nm)
- ✓ kept H2O and O2 reasonably low over 2 weeks
  - less than 5% loss of photoelectron



## **HBD** response to pion

#### ✓ search for a HBD signal around the projected position of a track

- tracking with SSD and GEM trackers in front of the HBD
- pion ID with lead-glass calorimeter behind the HBD

#### ✓ ave. charge and cluster size are both consistent with the expected result



✓ Lead-glass calorimeter is used for eID and position matching

- $\checkmark$  we observed 11 ± 1 p.e.
- $\checkmark$  expected performance is 11+1 p.e. and consistent with the observed result

✓ an electron candidate leaves a multiple-pads hit



## Trigger efficiency

# ✓ HBD issues a trigger signal via ASD connected to the bottom surface of the bottom GEM

• 30x30 cm2 GEM foil segmented into 9 trigger-tiles

#### ✓ due to noise, a very shallow curve around the threshold is observed

• detector capacitance of each segment is ~5 nF





## **Electron detection efficiency and pion rejection power**

## ✓ electron detection efficiency and pion rejection power at both the trigger level and the offline level are evaluated

- At the trigger level, only a charge threshold is applied in an ASD board
- At the offline level, a threshold for charge cluster size is applied as well as trigger level condition

#### ✓ pion rejection power at the trigger level is worse than we had expected due to noise of ASD

- noise control
- DAQ upgrade

|               | elD efficiency<br>observed/expected | pion rejection power<br>observed/expected |
|---------------|-------------------------------------|-------------------------------------------|
| trigger level | 0.63±0.03/0.68                      | 0.043±0.005/0.02                          |
| offline level | 0.61±0.04/0.63                      | 0.009±0.002/0.006                         |

## **Conclusions and outlook**

✓ we performed commissioning runs for the J-PARC E16 spectrometer which was design to measure dielectron spectrum

#### ✓ Hadron blind detector is utilized for eID and works

- expected response to electrons and pions
- recirculating gas system
- ✓ ASD board for a trigger signal is so noisy that pion contamination increases

✓ noise control by grounding and DAQ upgrade are on-going for the next beam time