Mexico laboratory Weizmann Institute

Meir Shoa

Some History OPAL DETECTOR

- OPAL (Omni-Purpose Apparatus at LEP) one of four large detectors at the Large Electron-Positron collider (LEP)
 - Started operation with the collider in August 1989
 - Data taking ended 2 November 2000
 - Detectors dismantled the following year to make room for construction of the <u>Large Hadron Collider</u> (LHC).
- 1980-1990 Lab activity TGC for the Hadron calorimeter
 - R&D TGC taken from prototype level to mass production
 - Production of 500 units
 - Installation

OPAL

Hadron Calorimeter

Presample chambers

Hadron calorimeter

1990-2000 Activities

- Maintenance of OPAL detectors
- R&D of special pre chambers and installation in OPAL
- Spaghetti project muon TGC chambers
 - Planned and constructed at Weizmann
- Start of R&D of TGC's units for Atlas
- End of decade start production of TGC's for the Atlas big wheels

2000-2008 Activities

- Construction of about 2100 TGC's
- Transport to CERN
- Mounting of TGC's on separated sectors
- Assembling of 6 big wheels and 2 small wheels
- Placing the wheels on Atlas pit (include services)

Big wheels

Small wheel

2008-2014 Activities

- Maintenance of TGC's (big wheels)
- R&D and full design for New Small Wheels small-strip TGC (sTGC)

2014-2021 Activities

- Production of 64 sTGC's quadruplets for the new small wheels
- Support involved sites for production
- Transport to CERN
- Testing detectors at CERN including Beam test and GIF
- Expert team for electronics and units assembly at CERN

New small wheels

2 NSW are operating underground in the ATLAS pit

Current activities

Mexico lab

- Maintenance for the big wheels in ATLAS
 - DCS, Spare production and replacement
- R&D projects
 - Muon spectrometer NA60+
 - EIL4 TGC to replace on 2026
- Production of the new EIL4 will start soon
- Design and planning the new lab

Spare TGC's units

- <u>22-23</u> 7 units will be replaced next EYETS
 - Production is taking place these days
- <u>LS3</u> 23 units are needed to be replaced
 - Production (ongoing) and spares.

TGC-EIL4 Project

42 triplets will be produced and installed at ATLAS during LS3

Laboratory team

- Part of the physics core facility unit at WIS
- Scientific Personnel
 - Overall scientific leadership SB
 - Two permanent physicists IR, LM
 - Physicist consultant VS
 - Per project leadership SB, SM, NT
- Technical team 5 full time employees
 - Management MS
 - Two project leaders GC, FB
 - Two engineers BY, ZF
- Temporary team hired per project
 - Currently 2 and up to 20 in intense mass production periods

Laboratory expertise

- Multi wire proportional chambers
- Transition for MPGD structure is straight forward
- Transition to other technologies is doable
- Fully equipped with necessary instrumentations
 - Flat granite tables, PS, measurement equipment and raw material to produce detectors
- Procurement of new instrumentation supported by the institute
 - Provided decent scientific justification

Example equipment – Faro arm

Example equipment – Graphite spraying machine

- Capacity > 40 large area
 PCBs (TGC CB are 3 m²) per day
- Good accuracy

Example equipment – Adjustable winding machine

- Custom made based on in house design
- Adjustable table size to cope with the different dimensions of the TGC types

Example equipment – XY X-ray mahcine

- Designed for the QA/QC of the sTGC
 - By the Russian team
- X-Y portable table synchronized with X-Ray tube and PS
- Used for gain uniformity test and identification of hotspots

Transition to the new DPPA building

- New building for the department of particle physics and Astrophysics
 - Construction start next year and will take ~3 years
- We are going to get a 850m² laboratory
 - Double than what we have today
- We will have all the facilities that we have today, but bigger and better

The new building

The new lab

Section | North- South

MYS ARCHITECTS

New lab

END

Angle (Using the Faro arm)

	Quad no' 1	Quad no' 2	Quad no' 3	Quad no' 4	Quad no' 5	Quad no' 6	Quad no' 7	Quad no' 8	Quad no' 9	Quad no' 10	Quad no' 11	Quad no' 12	Quad no' 13
1st layer angle (º)	-0.003	0.012		-0.005	-0.006	-0.004	0.003	0.007	0.001	0.004	0.01	0.01	0.009
2nd layer angle (º)	-0.008	0.013		-0.005	0.005	0.006	0.009	0.01	0.004	0.001	0.006	0.004	-0.008
3rd layer angle (⁰)	0.006	0.016		0.004	0.007	0.008	0.004	0.001	0.007	0.01	0.004	-0.005	0.01
4th layer angle (º)	0.002	0.001		0.004	0.006	0.001	-0.011	0.005	0	-0.007	0.005	0.01	0.008

FARO ARM

- This arm can move 2.7m around the connection point and measure any object by either touching points or scan it with laser.
- Precision of the Faro is 27 Micron max.
- We use the Faro for measuring cathode boards and also for final alignment test of quads.

Isometric view actual measurement

The nominal distance between Vbrass to strip at 90°

<u>NSW</u>

Our major responsibility was to produce 60 quads. 40 of type QL1 20 of type QS3

QL1

4 QS1 added in the end of the project QS3

QS1

IRRADIATION OF X-RAY MACHINE

• All the detectors and material pass x-ray irradiation to check long term stability and week points

LAB contribution at CERN

- Replacement and maintenance of TGC's on the big wheels
- Testing detectors at CERN including Beam test and GIF
- Experts technician with

