

GridPixes and their Application

Jochen Kaminski

University of Bonn

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

MPGD conference Tel Aviv 13.12.2022

Content

- GridPix Detectors
- X-ray Photon Detector for Axion Searches
- TPC Readout at future Higgs factories
- GridPix for X-ray Polarimetry
- GridPix in Neutron Detectors
- GridPix in a Negative Ion TPC
- GridPix in educational detectors

From Micromegas to GridPix

Could the spatial resolution of single electrons be improved?

Diffusion in amplification region:

 $\begin{array}{ll} \text{Ar:CO}_2 \ 80:20 & \rightarrow \ \sigma = 11 \ \mu\text{m} \\ \text{Ar:iC}_4 \text{H}_{10} \ 95:5 & \rightarrow \ \sigma = 11 \ \mu\text{m} \\ \text{Ar:CF}_4 \text{:iC}_4 \text{H}_{10} \ 95:3:2 \ \rightarrow \ \sigma = 11 \ \mu\text{m} \end{array}$

Smaller pads/pixels could result in better resolution!

At NIKHEF the GridPix was invented.

Standard charge collection: Pads / long strips Instead: Bump bond pads are used as charge collection pads.

Charge avalanche is collected by one pixel

→ one hit corresponds to one primary electron

MPGD 2022 J. Kaminski NÌM A535 (2004) 506-510 NIM A845 (2017) 233-235

The ASICs - Timepix(3)

Timepix: Available for tests since Nov. 2006

Number of pixels: 256×256 pixelsPixel pitch: $55 \times 55 \ \mu m^2$ Chip dimensions: $1.4 \times 1.4 \ cm^2$ ENC: $\sim 90 \ e^{-1}$

<u>Limitations:</u> no multi-hit capability. Each pixel can measure either charge or time.

Timepix3: Available for tests since 2012

Number of pixels: 256×256 pixelsPixel pitch: $55 \times 55 \ \mu m^2$ ENC: $\sim 70 \ e^{-1}$

- Charge (ToT) and time (ToA) available for each hit
- Timing resolution: 1.56 ns for duration of ~410 μs
- Zero suppression on chip (sparse readout)
- Multi-hit capable
- Output rate up to 5.12 Gbps

Timepix(3) in the SRS: NÌM A830 (2016) 75-81 JINST 17 (2022) C04015

MPGD 2022 J. Kaminski

Medipix collaboration: NÌM A581 (2007) 485-494 4 JINST 9 (2014) C05013

- 1. Formation of Si_xN_y protection layer
- 2. Deposition of SU-8
- 3. Pillar structure formation
- 4. Formation of Al grid
- 5. Dicing of wafer
- 6. Development of SU-8

The process will be transferred to the FTD at Bonn in 2023/24. See talk b

GridPix – Single Primary Electrons

Single primary electrons can be counted leading to excellent energy resolution.

CAST/IAXO – Search for Solar Axions

CAST: Decommissioned LHC-magnet is pointed to the Sun. Axions and Chameleons produced in the Sun convert into X-ray photons.

Axions / chame

Successor experiment (Baby-)IAXO is planned to be built at DESY.

- \rightarrow X-ray detectors with
- Low energy threshold
- High spatial resolution
- High radiopurity
- Shielded by lead

MPGD 2022

J. Kaminski

photo

See talk by E.Ferrer Ribas

UNIVERSITÄT BONN

NÌM A867 (2017) 101-107

JCAP 01 (2019) 032

CAST

MPGD 2022 J. Kaminski

1. data run 2014/15 \rightarrow Data published 2. data run 2017/18 \rightarrow Analysis is finalized

Data Run 2 had several improvements in the detector:

• 7 GridPix arrangement

(central main detector + 6 veto detectors)

- Signal decouple from grid and digitized by FADC
- 2 veto scintillators (behind GridPix and on top of lead shielding)
- Low material budget entrance window (300 nm Si₂N₄)

UNIVERSITÄT BONN

MPGD 2022 J. Kaminski

International Linear Collider (ILC) / Chinese Electron Position Collider (CEPC) Future Circular Collider (FCCee) are e^+e^- colliders with: $\sqrt{s} = 90$ GeV – 1 TeV / 90-240 GeV Overall length of 21-50 km / 100 km

Requirements of TPC from ILC TDR vol. 4

7 r_{in} rout Geometrical parameters 329 mm 1808 mm + 2350 mm Solid angle coverage up to $\cos\theta \simeq 0.98$ (10 pad rows) TPC material budget $\simeq 0.05 \ {
m X_0}$ including outer fieldcage in r $< 0.25 \ {
m X_0}$ for readout endcaps in z \simeq 1-2 imes 10 $^{6}/$ 1000 per endcap Number of pads/timebuckets $\simeq~1 imes$ 6 mm 2 for 220 padrows Pad pitch/ no.padrows $\simeq~60~\mu{
m m}$ for zero drift, $<~100~\mu{
m m}$ overall $\sigma_{\rm point}$ in $r\phi$ $\simeq 0.4 - 1.4$ mm (for zero – full drift) $\sigma_{\rm point}$ in rz $\simeq 2 \text{ mm}$ 2-hit resolution in $r\phi$ 2-hit resolution in rz $\simeq 6 \text{ mm}$ $\simeq 5 \%$ dE/dx resolution $\delta(1/p_t) \simeq 10^{-4}/\text{GeV/c}$ (TPC only) Momentum resolution at B=3.5 T

International Large Detector

- Standard layout HEP detector with improved performance
- TPC as main tracker

In addition: very high efficiency for particle of more than 1 GeV.

Parameter

MPGD 2022 J. Kaminski

PixeITPC for tracking at Colliders

A pixeITPC has some advantages compared to a conventional pad TPC

- Lower occupancy \rightarrow easier track reconstruction at higher backgrounds
- Improved dE/dx: <4% seems possible with electron or even cluster counting
- \bullet Removal of $\delta\text{-rays}$ and kink removal
- No angular pad effect

UNIVERSITAT BONN

To readout a large TPC:~50000 GridPixes needed

- \rightarrow Demonstrator with 160 GridPixes (Timepix) in 2015 Central module with 96 GridPixes (coverage 50%)
- 2 weeks of successful test beam.

Tracking with Timepix3

New effort to build larger modules with Timepix3 based GridPixes: First single chip (2017), then quads (2018), finally 8 quads (June 2021).

Tracking with Timepix3

Bfield 0 T beam momentum 6 GeV/c

k in pixels

in mm

1000

800

600

400

200

500

800

600

400

200

35 30

25

20 15

10

DESY LCTPC-Pixel Testbeam

1000 0_ò 500 1000 1500 2000 2500 y in pixels 45 40 500 1000 1500 2500 2000 y in pixels 200 100

100

200

300

400

MPGD 2022

J. Kaminski

Bun 6916 Event 12

1500

1000

2000

2500

y in pixels

Track with 1050 hits: $\chi^2_{xy} = 912/1048$ $\chi^2_{z} = 1740/1048$

No asymmetric tail (z time slewing) or outlier removal applied yet.

Many tests performed in B = 0/1 Twith various beam energies with various rates with various angles For the complete data taking a high precision external tracker was available

Neutron TPC

J. Kaminski

Silicone grease(ngrease = 1.465)

TPC with solid state converter on side walls ${}^{10}B + n \rightarrow {}^{7}Li + \alpha => two fragments: trigger + tracking$ Side walls: ${}^{10}B$, scintillator, glas, WLSF

neutron ¹⁰B/¹⁰B₄C (0.9 µm) Cathode Ar:CO2 Reflectors Wavelength shifting fibres(1mm E-field Wavelength shifting fibres He²⁺ Ionisation Li³⁺ Scint illator Reflectors g Glass Glass (1 mm)SiPM SiPM Anode Scintillator (10-100 µm) GridPix Readout Scalable Readout syste Trigger Trigger board MPGD 2022

Trigger board for 30 SiPMs

Neutron TPC

Current field Additional support Additional support structures thick wires with a spacing of 2 mm soldered on PCB.

First tracks of cosmic muons recorded with the TPC and external trigger. Analysis shows, that there are no track distortion in the xy-plane seen. Some distortions in the drift direction are seen close to the wires.

Copper strips near the endplates

> wires soldered on the PCB

frame

- CAST type detector with 3 cm drift
- Different He-based gas mixtures with CO₂ or DME
- Test beam at PETRA III (DESY) and KARA (KIT)
- Beam energies 4-11 keV
- Beam is >95 % linearly polarized
- \rightarrow reconstructed polarization 76% (sofar)

MPGD 2022 J. Kaminski

Polarization is interesting to measure, since it gives information about materials or physical processes.

 \rightarrow Difficult to measure at low X-ray energies with standard techniques

X-ray Polarimetry

X-ray Polarimetry in Astrophysics

Project by the X-ray polarimetry group at INAF-IAPS (lead by Paolo Soffitta). Idea is to prepare and propose a follow-up mission of the IXPE satellite, potentially using a GridPix instead of a Gas Pixel Detector. Important first tests have been performed with 2 standard GridPixes: 1.) Thermo vacuum tests

ix termo vacuum test: 1.1 on W69-F3; 1.2 on W66-E3; 1.3 on the plate 60.00 1.00F+00 1 00F-01 50.00 1.00E-02 40.00 ature (°C) 1 00F-03 30.00 Ten 20.00 1.00E-05 10.00 1.00E-06 0.00 1.00E-07 1000 4000

2.) random vibration test \rightarrow no resonances found up to 2 kHz

Before and after the two environmental tests high resolution pictures of the grid were taken and the ASICs were tested electronically \rightarrow no differences were found

Muon EDM at PSI

A new project for a dedicated First tests to evaluate GridPix-TPC (F. measurement of the muon EDM Renga, INFN Roma) to characterize the SC injection muon beam during the commissioning of channel the phase-I experiment (2025-2026). 125 MeV/cSolenoid Test beam with different mixtures of Trigger He:iC₄H₁₀ (95:5, 90:10, 85:15) Relative Hit Efficiency Rich study of gas Muon tagger parameters: $V_{driff}, D_{T}, D_{I},$ Scintillators 85:15 0.5 - 90:10 attachment α CMOS pixel detctor - 95:5 SciFi 350 450 300 400 HV [V] A second test 0.08 $\alpha \, [\mathrm{cm}^{-1}]$ Ground HV beam with 9505 Calorimeter 0.06 9010 He:CO₂ 8515 0.04 mixtures just 0.02 < 1 mtook place. -0.02 200 Istituto Nazionale di Fisica Nucleare Sezione di Roma 400 600 800 UNIVERSITAT E [V/cm]

Negative Ion TPC

Detector with 32 GridPixes based on Timepix3

UV laser (337nm) used to generate tracks.

Gas mixtures:

Ar:iC₄H₁₀:CS₂ 93.6:5.0:1.4

- + O₂ (650-1150 ppm) -minority carrier
- + TMPD (to enhance sensitivity to laser)

MPGD 2022 J. Kaminski

SchulTPC

Compact, flexible and mobile detector for educational purposes such as: exhibitions, school projects, workshops at schools

Setup consists of (partially planned)

- TPC: 10 cm length, 8 cm inner diameter
- 4 GridPixes
- Compact readout system (FitPix)
- 2 trigger scintillators
- Possibly small, compact HV supply
- Operated with welding gas (cheap)
- Currently developing an educational concept for schools
- Thinking about a small magnet

Summary and Outlook

GridPixes are seeing a transition from Timepix to Timepix3.

The grid production can soon be done in Bonn, which will open possibilities for new ideas and R&D.

More projects are becoming interested in testing the devices and evaluate them for their applications.

There is quite a large interest in the possible PID performance of GridPixes in particular if cluster counting can be exploited.

Acknowledgment

This is of course the work of many people.

In Bonn these are: Yevgen Bilevych (who builds the InGrids) Christoph Krieger, S. Schmidt, T. Schiffer, J. von Oy (CAST/IAXO), M. Lupberger, D. Danilov, A. Hamann (LCTPC). M. Gruber (Polarimetry) M. Köhli, D. Pal (Neutron TPC) and of course Klaus Desch.

Special thanks goes to our technical team H. Blank, W. Ockenfels, S. Zigann-Wack, as well as the electronics and mechanical workshops.

At Nikhef:

H. van der Graaf, F. Hartjes, P. Kluit, C. Ligtenberg, G. Raven, J. Timmermans.

and even more on smaller projects.

