Could MPGDs revolutionize noble-liquid detectors? *

Remark: three other talks on *dual-phase* novelties by **Chepel, Roy & Tesi**

* for more details:

<http://arxiv.org/abs/2203.01774> <https://doi.org/10.1088/1748-0221/17/08/P08002>

Talk dedicated to my friend *Francois Piuz 1937-2022* One of the leading Detector Physicists of my generation

Last project: CsI-RICH of LHC-ALICE

50 years ago…

Noble-liquid TPCs: current status

LEM (THGEM)

DM, Neutrino Physics

S1- scintillation: Time stamp/threshold S2- EL/CM: charge & 2D

Energy deposited in liquid. Primary scintillation detected by PMTs, SiPM. Charges extracted to gas + **multiplied** by electroluminescence or by avalanche. XENON, LUX, PNDA X,

Future 50-ton LXe – DARWIN/XLZD Dark-matter search

Amos Breskin - MPGD concepts in noble liquid detectors – MPGD 2022

Single-phase *Charge collection*

Energy deposited in liquid. Primary scintillation detected by photon detectors. Charges detected in liquid by wires (or multilayer perforated electrodes), **without multiplication**

3 wire planes or Multilayer perforated PCB (M-THGEM-like)

Future 68-Kton LAr DUNE Neutrino physics

Single-phase: from wires to microstructures - e⁻

- MSP formed on VUV-transparent substrate, with thin Ni or Cr electrodes.
- **L-MSP**: MSGC, COCA COLA, VCC …
- Charges deposited in liquid, undergo electroluminescence (EL) & small charge multiplication (CM) @ high field near the **anode strips**.
- The effective light-emission region depends on the MSP type, & potentials applied to the MSP electrodes recorded by photo-sensors.

Why new concepts?

Dual-phase:

Current expected problems with large-area TPCs, that affect resolution & efficiency:

- liquid-gas interface instabilities spontaneous electron emission, gas gap variations,
- electron extraction efficiency from liquid to gas,
- limited avalanche gain in noble gases.
- Mechanical issues

Single-phase:

- No multiplication
- High threshold
- Only suits highly ionizing events

 Multiplication in single-phase liquid: **Lower detection thresholds May Pave the way to novel DM detectors**

NOVEL DUAL-PHASE DETECTOR CONCEPTS

Why single phase?

- To overcome liquid-gas **interface problems** in large dual-phase detectors:
- Only single-phase can be **"face-to-face"** and **"horizontal":**
	- \rightarrow Half of HV for equal field; avoids effects of sporadic bubbles
- "**Radial** geometry" possible

- New concepts: potentially "cheaper" photo-sensors; lower detection thresholds
	- \rightarrow impact on the "physics"

Goal:

Devise robust noble-liquid MPGD multiplier configurations for detecting both: **e⁻ & UV-photons**

Tool Box:

MSPs: MSGC & VCC

Field-line simulations: substrate 0.5mm; anode-strips 5μm; cathode-strips 200μm; drift-gap=1.9mm; strip pitch=1mm. Potentials: V_a=5KV; V_c=0; backplane: V_b=0; drift: V_d=-300V.

Simulated E vs distance from anode strip: MSGC vs VCC

crossing EL threshold **~ 20**m**m from strip surface.** Avalanche threshold **~10**m**m from surface.** (thresholds: **Aprile 2014**)

E vs distance from strip: substrate 0.5mm; anode-strips 5-50μm; cathode-strips 200μm; drift-gap=1.9mm; strip pitch=1mm. Potentials: $V_a = 5KV$; $V_c = 0$; backplane: $V_b = 0$; drift: $V_d = -300V$.

MSGC & VCC: similar results for E vs ∆r: @ 5-10µm anode strips, for V_a= 5kV* *(5 kV not applicable in MSGC → sparks) **VCC: anode strips insulated from cathode plane V^a (VCC) certainly > V^a (MSGC) !!!**

MSGC - Preliminary results

Average of S2 spectrum vs V_{anode}

Amos Breskin - MPGD concepts in noble liquid detectors – MPGD 2022

MSP Simulations - EL & CM onset vs distance from strip - vs V_a

Single-phase with cascaded THGEM + MSP \rightarrow S1 & S2

- 2-stage TPC with CsI-coated **L-THEM + L-MSP.** here **L-VCC** with S.T. Cr\Ni strips on VUV- substrate.
- **S2 e -** & **S1 UV-pe-** collected into L-THGEM holes & efficiently* transferred to the L-VCC.
- VUV photons emitted by **EL + small avalanche** near strips, are detected through the substrate, by top photo-sensors.
- Other fraction of S1 photons $-$ are detected by bottom photo-sensors or reflected by a mirror-cathode to the CsI.
- Option: top L-THGEM surface can be reflective or coated with a WLS $\left(\rightarrow\right)$ visible-range photo-sensors, glass

substrate).

Experimental Transfer *Efficiency of e⁻ and pe⁻ through THGEM holes in LXe.

Effective quantum efficiency Q_{eff} of CsI in LXe **GEM, SC-GEM, THGEM**

Expected <u>average</u> QE_{eff} in LXe across the entire surface of an electrode, as a function of voltage across the *electrode. They were computed (using COMSOL®) for different perforated electrodes; electric field values: Ed=0.5 kV/cm and E^t =-1 kV/cm.*

Single-phase with single Micro Hole & Strip Plate (MHSP)

- A single-phase TPC with (here) a CsI-coated **L-MHSP**.
- Both S2 e- & VUV photoelectrons are collected into the L-MHSP holes, drift to MHSP anode strips.
- VUV photons by EL + small avalanche near strips, are detected by the top photo-sensors.
- Other fraction of S1 photons detected by bottom photo-sensors.

Single-phase with Micro-structured electrode

- A single-phase TPC with a Liquid micro-structured THGEM multiplier (**L-MS-THGEM**) coated with CsI. Both S2 ionization electrons and S1 VUV photoelectrons are collected into the holes, drift across the THGEM electrode, towards the microstructured top surface.
- VUV photons emitted by EL + small avalanche at the vicinity of the "anode tips", are detected by the top photo-sensors.
- Other fraction of S1 photons are detected by bottom photo-sensors (or mirror)

Can we form large-size patterned electrodes?

ARIADNE LAr TPC with optical readout. **50x50cm² glass THGEM (GTHGEM)**

• GGEMs can be made from most types of glass and large areas are possible (towards 1m x 1m - glass dependent)

K Mavrokoridis | ARIADNE+ | RD51 Meeting

Lowe et al. Appl. Sci. **2021**, 11(20), 9450; <https://doi.org/10.3390/app11209450>

07/02/2022

- So far, borofloat 33 glass and fused silica glass electrodes (the latter of *higher radio purity*) produced by abrasive formation of sub-mm holes.
- Electrode surfaces coated by resistive ITO film;
- Can be patterned, by laser techniques – e.g. to form **COBRA-like patterns**.
- Thin anode strips and other metallic patterns currently formed in industry: inkjet & photolithographic techniques. (few-micron thin strips on relatively large areas (up to $24''x$ $24''$) already formed on a variety of substrate materials.

See refs in <https://doi.org/10.1088/1748-0221/17/08/P08002>

Could MPGDs revolutionize noble-liquid detectors?

Single-phase TPCs:

- • *Many open questions…*
- *Simulations & exp. R&D on MSPs configurations (LAr, LXe)*
- *R&D on nanostructures*
- *R&D on stability of VUV-photocathodes in noble liquids*
- *Technologies: radio-clean materials, production methods, modularity…*

Dual-phase TPCs: *Talks by CHEPEL, ROY, TESI* e & photon multiplier & photo-sensor module

Open to collaborations! Students and postdocs welcome!

Thank you

Some projects currently supported by RD51 Common Fund

