TMM: Triple MicroMegas with ultra-low ion backflow for gaseous photon detectors sensitive to visible light

Kunyu Liang, Zhiyong Zhang, Jianbei Liu, Ming Shao, Yi Zhou

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

MPGD 2022

Outline

- Motivation
- Design and Fabrication
- Performance Characterization
 - ➢Gas Gain and IBF Ratio
 - ➢Optimization for Electron Collection
 - ≻Laser Test
- Summary

Motivation: GPD

- Gaseous Photon Detector(GPD) based on MPGD
 - Iarge area, low cost, resistance to magnetic field, high spatial and time resolution, IBF suppression…
- GPD sensitive to UV-light have been successfully applied
 DVisible-sensitive GPD is challenging yet promising

F. Tokanai et al. , NIM A 766 (2014) 176-179

A V Lyashenko et al 2009 JINST 4 P07005

Motivation: Challenges

- Challenges of visible-sensitive GPD
 ➢ High gain: single photon detection
 ➢ Ultra-low IBF: bi-alkali, ~µC/cm²
- DMM: Double MicroMegas

 IBF ratio: down to ~3 × 10⁻⁴
 Gain for single photon detection: ~10⁵
 BF × Gain ~ 10¹
 backflow ions mainly come from the secondary amplification gap
- ✓IBF Could be further suppressed by adding an amplification gap

QE of bi-alkali photocathode before and after $aging(0.4 \ \mu C/cm^2)$ T. Moriya et al. , NIM A 732(2013) 269-272

TMM Design

PA: PreAmplification SA: Secondary Amplification TA: Tertiary Amplification

- To suppress IBF:
 - ✓ Large PA gap($\sim 240 \mu m$)
 - \checkmark High mesh density(LPI650)
 - ✓ Crossing mesh setting
 - ✓ Ions from the **tertiary** amplification could be blocked much easier

setting adjacent meshes with a crossing angle

Kunyu Liang

from study of DMM

TMM Fabrication

- TMM is Fabricated with the thermal bonding technique developed at USTC
- Thermal bonding films were used to fix the mesh and keep appropriate avalanche gap

After bonding

Mesh cut

TMM prototype

Kunyu Liang

Gas Gain

- Tested in Ar(93%) + CO₂(7%), with ⁵⁵Fe (5.9keV X-ray)
- Ratio = $\frac{E_{PA}}{E_{drift}}$ = 240 to maximize electron transparency
- Combined gain: 7 × 10⁴
- Typical energy resolution: ~21%

Parameters of meshes

Detector	PA mesh	SA mesh	TA mesh
TMM1	650(40%)*	650(40%)	500(40%)

*: Line Per Inch(Opening Rate) → LPI(OR)

IBF measurement

- $I_{primary}$: ~pA, I_{drift} : 10~100 pA, I_{anode} : -10 ~ 300 nA
- Keithley(6482) Picoammeter with ~ 10 fA resolution in a range of ± 20 nA

Kunyu Liang

IBF Ratio

- IBF ratio down to $\sim 3 \times 10^{-5}$ at a PA voltage of 450V
- $\checkmark \sim$ One order of magnitude better than that of DMM

Optimization for Electron Collection

Detector	PA mesh	SA mesh	TA mesh
TMM1	650(40%)*	650(40%)	500(40%)
TMM2	500(50%)	650(40%)	500(40%)
TMM3	500(50%)	650(40%)	500(40%)
	tuling Darlagh(Onganin	a Data)	

*: Line Per Inch(Opening Rate)

- Low PA voltage would degrade electron collection efficiency
- Two TMM prototype with PA mesh of higher Opening rate and lower LPI were fabricated
- Energy Resolution(FWHM Energy Resolution(FWHM) Fitting function Fitting function Kalpha:19.4% Kalpha:24.1% Kbeta:17.5% Kbeta:23.5% Escape peak of Ar Escape peak of Ar TMM1 TMM2 ~24.1% ~19.4% 800 1000 1200 1400 1600 1800 2000 600 800 1000 1200 1400 1600 1800 2000
- Energy resolution was improved
 ✓ Implies better electron collection

Combined energy resolution at PA550V+SA650V

Various SA Voltage

- TMM1, PA fixed to 650V, TA fixed to 500V
- Two turning points
 - The left one indicates the changing of combined transparency.
 - The right one indicates the begin of electron avalanche ($E \sim 10^4$ V/cm).
- ✓ Low SA voltage could improve resolution while keeping low IBF

Energy resolution of TMM2

Good energy resolution can be obtained with appropriate voltage

- Higher PA voltage
- High or very low SA voltage

Effect on IBF

- PA mesh of different LPI and OR may affect the IBF ratio
 > LPI of TMM2 PA mesh is lower
- ✓ Higher LPI and higher OR are preferred

Detector	PA mesh
TMM1	650(40%)
TMM2	500(50%)

Kunyu Liang

Single Photon-Electron Response

- TMM3, Quartz coated with aluminum layer as photocathode
- Tested in COMPASS gas: Ne (80%), CF_4 (10%) and C_2H_6 (10%)
- Gas gain can reach up to 5×10^6 for single electron

 Detector	PA mesh
TMM1	650(40%)
TMM3	500(50%)

Summary

- Developed a TMM detector featuring ultra-low IBF based on DMM
- Demonstrated the performance of TMM protype
 ➢ Gain: 7 × 10⁴ for 5.9 keV X-ray and 5 × 10⁶ for single photon-electron
 ➢ IBF ratio: down to 3 × 10⁻⁵
- Optimized for electron collection
 ✓ Higher LPI and Higher Opening Rate mesh are preferred
- Promising for gaseous photon detectors sensitive to visible light
 Gas-PMT based on TMM now under developing!

Summary

- Developed a TMM detector featuring ultra-low IBF based on DMM
- Demonstrated the performance of TMM protype
 ➢ Gain: 7 × 10⁴ for 5.9 keV X-ray and 5 × 10⁶ for single photon-electron
 ➢ IBF ratio: down to 3 × 10⁻⁵
- Optimized for electron collection
 ✓ Higher LPI and Higher Opening Rate mesh are preferred
- Promising for gaseous photon detectors sensitive to visible light Gas-PMT based on TMM now under developing!

Thanks for Listening!

backup

GPD on COMPASS RICH-1

PA mesh Thermal bonding film 150µm *2 SA mesh Thermal bonding film 150µm *2 TA mesh Thermal bonding film 150µm *1 Anode

Gas-PMT THGEM-like+MM, IBF~1% Mesh+Mesh, IBF~0.06%, G~10⁴

F. Tokanai et al. , NIM A 766 (2014) 176-179

Backup

(a)

(b)

6.0 mm

IBF Measurement with Laser

- I_{primary}(~pA): cathode current induced by photonelectrons without avalanche
- Higher IBF(~1.5 \times 10^{-4}) was measured in the COMPASS gas
 - Smaller horizontal diffusion of Ne may explain

✓ Working gas of g-PMT needs further research

