Towards robust PICOSEC Micromegas precise timing detectors

#### MARTA LISOWSKA

ON BEHALF OF THE CERN EP-DT-DD GDD TEAM AND THE PICOSEC MICROMEGAS COLLABORATION

THE 7TH INTERNATIONAL CONFERENCE ON MICRO PATTERN GASEOUS DETECTORS, 11-16 DECEMBER 2022



### **PICOSEC Micromegas**

**Detector concept** 

• **PICOSEC Micromegas collaboration:** gaseous detector that aims at reaching a time resolution of tens of picoseconds



• First single-pad prototype with  $\sigma$  < 25 ps  $\rightarrow$  Now we want to make the concept appropriate to physics applications

### **PICOSEC Micromegas**

Developments towards applicable detector

.

• **Objective:** Robust tileable multi-channel detector modules for large area coverage



More information about the 100-channel detector and dedicated amplifiers in the previous presentation by Antonija Utrobicic

Advantages and requirements

•

- Advantages of resistive Micromegas:
  - + limitation of the destructive effect of discharges
  - + stable operation in intense pion beams
  - + better position reconstruction, signal sharing
  - **Objective:** profit from the advantages of the resistive Micromegas while maintaining good time resolution



#### **Requirements for choosing the resistivity:**

#### <u>low enough to</u>:

 $\rightarrow$  minimise the voltage drop during high rate beam

 $\rightarrow$  improve the position reconstruction

high enough to:

 $\rightarrow$  ensure stable operation

 $\rightarrow$  not affect the rising edge of the signal

#### Rate capability

#### Simulated voltage and gain drop vs applied voltage for different resistivities



The minimum resistivity that ensures a detector's stable operation is 10 M $\Omega/\Box$ 

#### SIMULATIONS

for a pion beam of 1.5 cm dia. and 1.9 MHz

#### Simulated voltage drop across the area



All simulations by Djunes Janssens

#### Dependence on the rising edge of the signal

#### Simulated shape of the induced signal for different resistivities



**Resistivity** chosen for the 10x10 cm<sup>2</sup> area PICOSEC MM detector: **20** M $\Omega$ / $\Box$ 

All simulations by Djunes Janssens

Multipad: 100-channel PICOSEC MM detector

- Multipad: 100-channel detector with a 10x10 cm<sup>2</sup> area resistive MM with anode surface resistivity of 20 M $\Omega$ / $\Box$
- Production procedure as for a non-resistive Multipad with an additional production step to add a resistive layer



More information about the design and production procedures of the Multipad in the presentations by Antonija Utrobicic

#### RD51 test beam campaign

- Beam type: CERN SPS H4 beam line, 150 GeV/c muons
- Experimental setup:
  - → tracking/timing/triggering telescope: GEMs + MCP PMTs
  - → PICOSEC Micromegas (MM) detectors
  - $\rightarrow$  flammable gas mixture: Ne:CF<sub>4</sub>:C<sub>2</sub>H<sub>6</sub> (80:10:10)
- Previously used electronics: <u>Cividec</u> + Oscilloscope
   → both not scalable to multiple channels detector
- New electronics dedicated for Multipad:
  - $\rightarrow$  Custom-made RF pulse amplifier cards optimised for PICOSEC
  - ightarrow 128-channel SAMPIC digitizer





Test beam measurements - oscilloscope

• Multipad with a resistive MM 20 M $\Omega$ / $\Box$ , a CsI photocathode and RF pulse amplifiers measured with an oscilloscope



Test beam measurements - oscilloscope

• Multipad with a resistive MM 20 M $\Omega$ / $\Box$ , a CsI photocathode and RF pulse amplifiers measured with an oscilloscope



PRELIMINARY

Test beam measurements - oscilloscope

• **Multipad** with a **resistive MM 20 M\Omega/** $\Box$ , a CsI photocathode and RF pulse amplifiers measured with an oscilloscope



• Preliminary results for 10x10 cm<sup>2</sup> resistive MM 20 M $\Omega$ / $\Box$  showed a time resolution below 20 ps for an individual pad!

New digitiser dedicated for 100-channel detector

- SAMPIC Waveform TDC
  - ightarrow 128-channel digitiser under test (instead of a 4-channel oscilloscope) possibility to read out full Multipad
  - $\rightarrow$  8.5 GS/s sampling frequency (instead of 10 GS/s with oscilloscope) test of achievable timing precision
  - ightarrow 64 samples maximum digitalisation ion tail is not fully included in the signal



SAMPIC digitiser developed by Jihane Maalmi, Dominique Breton et al., CEA Saclay



Test beam measurements – SAMPIC (1)

- **SAMPIC readout** of a 100-channel PICOSEC detector equipped with a resistive MM 20 M $\Omega$ / $\Box$  and a CsI photocathode
- Signal amplitude results achieved with single p.e. (LED measurement) and with multiple p.e. (beam measurement)



Signal amplitude for single p.e. measurements

- Non-uniform response of the signal across the area: amplitude decrease towards the center of the detector
- Possible reason: variation in the resistive MM board planarity of 30  $\mu$ m  $\rightarrow$  Investigation of the production procedure

Signal amplitude for **multiple p.e.** measurements

PRELIMINARY

Test beam measurements – SAMPIC (2)

• **SAMPIC readout** of a 100-channel PICOSEC detector equipped with a resistive MM 20 M $\Omega$ / $\Box$  and a CsI photocathode



• Non-uniform response of the signal within the pads

Test beam measurements – SAMPIC (2)

• **SAMPIC readout** of a 100-channel PICOSEC detector equipped with a resistive MM 20 M $\Omega$ / $\Box$  and a CsI photocathode





- Non-uniform response of the signal within the pads
- Uniform time resolution within the pads
- Narrow distribution of the time resolution across the area
- Tool to study the response of 100-channel PICOSEC detector



PRELIMINARY

#### Problem with CsI and alternatives

First single-pad prototype: Csl photocathode •

+ high quantum efficiency in comparison to other materials:  $\sim 10$  p.e. / MIP

with 3 mm MgF<sub>2</sub> radiator + 3 nm Cr layer + 18 nm CsI photocathode

- can be damaged by ion back flow, sparks, discharges
- sensitive to humidity (assembly)
- Need to search for alternative •

#### photocathode materials:

- $\rightarrow$  Diamond Like Carbon (DLC)
- $\rightarrow$  Boron Carbide (B<sub>4</sub>C)
- $\rightarrow$  Nanodiamonds
- $\rightarrow \dots$





25

20

10

5

0

0

QE (%)

Test beam measurements – B<sub>4</sub>C photocathodes

- **Prototype #1**: Single channel non-resistive MM, pre-amplification gap 170 μm
- **Photocathodes**: B<sub>4</sub>C of different thicknesses\*
- Measurements procedure:

1. Single PE measurement with LED  $\rightarrow$  2. Beam measurement  $\rightarrow$  3. Timing measurement

#### **#PE analysis procedure**\*\*:

1. Find maximum amplitude for each waveform 2. Plot a histogram of all maximum amplitudes 3. Fit with Polya and calculate the mean value 4. Divide beam mean amplitude by LED mean amplitude to obtain #PE for each photocathode

\* B<sub>4</sub>C photocathodes deposited by M. Pomorski (CEA Saclay)



\*\* PE analysis thanks to help of S. Tzamarias (AUTH), D. Janssens (CERN) and M. Robert (Queen's University)



TOWARDS ROBUST PICOSEC MICROMEGAS PRECISE TIMING DETECTORS

#### Results for B<sub>4</sub>C of different thicknesses

• **Prototype #1**: Single channel non-resistive MM\*, pre-amplification gap 170 μm



Does not follow the trend. Different thickness? Problem with the deposition?

\*Produced at CERN MPT workshop

Results for B<sub>4</sub>C of different thicknesses

The best sample Time resolution vs B4C layer thickness **Photoelectrons vs B4C layer thickness** 7,0 75 140 🔵 C 510 V 🔵 C 510 V 6,5 70 120 6,0 65 100 5,5 resolution [ps] 60 5,0 events 55 Ы 4,5 of 60 50 # Time 4,0 40 45 3,5 20 40 3,0 35 2,5 2,0 30 10 12 14 16 10 12 14 16 0 4 6 0 2 Λ B4C layer thickness [nm] B<sub>4</sub>C layer thickness [nm]

• **Prototype #1**: Single channel non-resistive MM\*, pre-amplification gap 170 μm

Does not follow the trend. Different thickness? Problem with the deposition?



\*Produced at CERN MPT workshop

Results for 12 nm B<sub>4</sub>C with different prototype

• **Prototype #2**: Single channel non-resistive MM\*, pre-amplification gap 120 μm, detector confirmed to work properly



\*Produced at CEA Saclay

Results for 12 nm B<sub>4</sub>C with different prototype

• **Prototype #2**: Single channel non-resistive MM\*, pre-amplification gap 120 μm, detector confirmed to work properly



• Single-pad prototype equipped with a **12 nm thick B<sub>4</sub>C photocathode** showed a **time resolution below 25 ps!** 

\*Produced at CEA Saclay

#### Summary

- Excellent timing performance of the new
   100-channel PICOSEC MM prototype
   → Multipad with a resistive MM with a time
   resolution < 20 ps for an individual pad</li>
- Measurements with a complete readout chain
   → Successful readout of multiple channels
- Developments towards robust photocathodes

   → Preliminary results of a single-pad prototype
   equipped with a 12 nm thick B<sub>4</sub>C photocathode
   showed a time resolution < 25 ps</li>



#### **Future perspectives**

Developments

- **Stability**  $\rightarrow$  Stable operation in intense pion beams with resistive MM Multipad
- **<u>Robustness</u>**  $\rightarrow$  PICOSEC MM detector with a 10x10 cm<sup>2</sup> area B<sub>4</sub>C and DLC photocathode
- <u>Electronics</u>  $\rightarrow$  Complete readout of all 100 channels, exploring alternative electronics
- Integration  $\rightarrow$  Sealed detectors (clean, hermetically closed devices with high gas quality)
- Scaling to larger area  $\rightarrow$  Tiling 10x10 cm<sup>2</sup> modules, development of 20x20 cm<sup>2</sup> prototype



#### **PICOSEC Micromegas Collaboration**

M. Lisowska<sup>1,2,\*</sup>, Y. Angelis<sup>3</sup>, J. Bortfeldt<sup>4</sup>, F. Brunbauer<sup>1</sup>, E. Chatzianagnostou<sup>3</sup>, K. Dehmelt<sup>5</sup>, G. Fanourakis<sup>6</sup>, K. J. Floethner<sup>1,7</sup>, M. Gallinaro<sup>8</sup>, F. Garcia<sup>9</sup>, P. Garg<sup>5</sup>, I. Giomataris<sup>10</sup>, K. Gnanvo<sup>11</sup>, T. Gustavsson<sup>12</sup>, F.J. Iguaz<sup>10</sup>, D. Janssens<sup>1,13,14</sup>, A. Kallitsopoulou<sup>10</sup>, M. Kovacic<sup>15</sup>, P. Legou<sup>10</sup>, J. Liu<sup>16</sup>, M. Lupberger<sup>7,17</sup>, S. Malace<sup>11</sup>, I. Maniatis<sup>1,3</sup>, Y. Meng<sup>16</sup>, H. Muller<sup>1,17</sup>, E. Oliveri<sup>1</sup>, G. Orlandini<sup>1,18</sup>, T. Papaevangelou<sup>10</sup>, M. Pomorski<sup>19</sup>, L. Ropelewski<sup>1</sup>, D. Sampsonidis<sup>3,20</sup>, L. Scharenberg<sup>1,17</sup>, T. Schneider<sup>1</sup>, L. Sohl<sup>10</sup>, M. van Stenis<sup>1</sup>, Y. Tsipolitis<sup>21</sup>, S.E. Tzamarias<sup>3,20</sup>, A. Utrobicic<sup>22</sup>, R. Veenhof<sup>1,23</sup>, X. Wang<sup>16</sup>, S. White<sup>1,24</sup>, Z. Zhang<sup>16</sup>, and Y. Zhou<sup>16</sup>

<sup>1</sup>European Organization for Nuclear Research (CERN), CH-1211, Geneve 23, Switzerland <sup>2</sup>Université Paris-Saclay, F-91191 Gif-sur-Yvette, France <sup>3</sup>Department of Physics, Aristotle University of Thessaloniki, University Campus, GR-54124, Thessaloniki, Greece <sup>4</sup>Department for Medical Physics, Ludwig Maximilian University of Munich, Am Coulombwall 1, 85748 Garching, Germany <sup>5</sup>Stony Brook University, Dept. of Physics and Astronomy, Stony Brook, NY 11794-3800, USA <sup>6</sup>Institute of Nuclear and Particle Physics, NCSR Demokritos, GR-15341 Agia Paraskevi, Attiki, Greece <sup>7</sup>Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Nußallee 14–16, 53115 Bonn, Germany <sup>8</sup>Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal <sup>9</sup>Helsinki Institute of Physics, University of Helsinki, FI-00014 Helsinki, Finland <sup>10</sup>IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France <sup>11</sup>Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA <sup>12</sup>LIDYL, CEA, CNRS, Universit Paris-Saclay, F-91191 Gif-sur-Yvette, France <sup>13</sup>Inter-University Institute for High Energies (IIHE), Belgium <sup>14</sup>Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium <sup>15</sup>Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia <sup>16</sup>State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China <sup>17</sup>Physikalisches Institut, University of Bonn, Nußallee 12, 53115 Bonn, Germany <sup>18</sup>Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, 91054 Erlangen, Germany <sup>19</sup>CEA-LIST, Diamond Sensors Laboratory, CEA Saclay, F-91191 Gif-sur-Yvette, France <sup>20</sup>Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece <sup>21</sup>National Technical University of Athens, Athens, Greece <sup>22</sup>Institute Ruder Bosković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia <sup>23</sup>Bursa Uludağ University, Görükle Kampusu, 16059 Niufer/Bursa, Turkey <sup>24</sup>University of Virginia, USA



#### MARTA LISOWSKA | MPGD2022 CONFERENCE | 11-16 DECEMBER 2022

# Thank you for your attention!

CONTACT: MARTA.LISOWSKA@CERN.CH

Back up slides

MARTA LISOWSKA | MPGD2022 CONFERENCE | 11-16 DECEMBER 2022

TOWARDS ROBUST PICOSEC MICROMEGAS PRECISE TIMING DETECTORS

## **Classical vs PICOSEC Micromegas**

#### Signal arrival time jitter

- Classical Micromegas:
  - $\rightarrow$  different position of ionisation clusters at direct gas ionisation

ightarrow signal arrival time jitter due to drift velocity and average ionisation length

 $\sigma_t = \frac{\sigma_I}{v_d} = \frac{355\,\mu m}{84\,\frac{\mu m}{ns}} \approx 4\,ns$ 

Estimated time jitter for COMPASS Micromegas

#### • PICOSEC Micromegas:

- ightarrow particles produce Cherenkov radiation
- ightarrow electrons are emitted by the radiation in a photocathode
- $\rightarrow$  all primary ionised electrons are localised on the photocathode
- $\rightarrow$  due to high electric field, time jitter before first amplification minimised

L. Sohl, RD51 Miniweek (2020), <u>link</u>





### **PICOSEC Micromegas**

#### Signal arrival time

- Signal arrival time (SAT) = <T<sub>e-peak</sub>>
  - $\rightarrow$  SAT depends on e-peak charge
  - ightarrow SAT can be reduced by higher drift field and bigger pulses
- Location of first ionisation determines length of avalanche
   → longer avalanches result in bigger e-peak charge
   → bigger e-peak charge reduces SAT
  - $\rightarrow$  bigger e-peak charge reduces SAT





K. Kordas, VCI 2019 conference, <u>link</u>

### **PICOSEC Micromegas**

#### **Timing properties**

- Reference device with better timing precision than the PICOSEC is needed to quantify the timing precision of PICOSEC.
- Sigmoid function is fitted to the leading edge of the electron peak. Position of the signal is calculated at 20% Constant Fraction (CF).
- Signal arrival time (SAT): the difference between PICOSEC and reference detector timing marks.
- Time resolution of the detector is defined as standard deviation of SAT distribution.



A. Utrobičić, VCI 2022 conference, link

## Preamplification gap

#### Uniform thickness

- **Problem:** first 19 channels PICOSEC Micromegas prototype:
  - active area of 3.6 cm in diameter
  - deformations in the range of 30  $\mu m$  in the active area
  - time error and non-uniform response of the detector
  - problem even more pronounced for larger area prototype



19 channels PICOSEC MM prototype



Deformation of 19 channels PICOSEC MM, A. Aune et al., link



Problem of non-uniform preamplification gap

### Multipad: 100 channels PICOSEC Micromegas detector

From simulations and design to production, measurements and assembly

- Requirement: Precise mechanics to preserve uniform thickness of the preamplification gap
- **Current status:** 100 channels PICOSEC Micromegas detector with uniform thickness (< 10  $\mu$ m) of the preamplification gap





Mechanical aspects: A. Utrobičić, RD51 CM, link

More details: A. Utrobičić, VCI 2022 conference, link



MARTA LISOWSKA | MPGD2022 CONFERENCE | 11-16 DECEMBER 2022



### Photocathode characterisation

QE measurements - Reflective mode



TOWARDS ROBUST PICOSEC MICROMEGAS PRECISE TIMING DETECTORS

### Photocathode characterisation

QE measurements - Transmission mode



TOWARDS ROBUST PICOSEC MICROMEGAS PRECISE TIMING DETECTORS

### Photocathode characterisation

#### Ageing studies – Irradiation mode



**3. Irradiated sample (grounded):** Attraction of ions from avalanche Accumulation of charge

2. Multiplication wires (positive HV): Attraction of primary electrons Avalanche multiplication Production of electrons and ions

1. X-ray beam in a gas chamber: lonization of particles Creation of primary charge



### Integration

#### Sealed detectors

- Advantages of sealed detectors:
  - + clean, hermetically closed devices with high gas quality
  - + high ratio of active area to the size of the device
- Current status:
  - → one 10x10 cm<sup>2</sup> titanium housing ready to assembly → large area robust photocathode (DLC,  $B_4C$ ) required
  - ightarrow gas connectors (pinch-off tubes) ready to assembly
  - $\rightarrow$  closing procedure: electron beam welding
  - ightarrow last step: filling the detector with gas mixture

