Towards robust PICOSEC Micromegas precise timing detectors

MARTA LISOWSKA

ON BEHALF OF THE CERN EP-DT-DD GDD TEAM AND THE PICOSEC MICROMEGAS COLLABORATION

THE 7TH INTERNATIONAL CONFERENCE ON MICRO PATTERN GASEOUS DETECTORS, 11-16 DECEMBER 2022

PICOSEC Micromegas

Detector concept

PICOSEC Micromegas collaboration: gaseous detector that aims at reaching a time resolution of tens of picoseconds

• First single-pad prototype with σ < 25 ps \rightarrow Now we want to make the concept appropriate to physics applications

PICOSEC Micromegas

Developments towards applicable detector

Objective: Robust tileable multi-channel detector modules for large area coverage

Preamplification gap:

- \rightarrow uniform thickness
- \rightarrow reduced thickness
- **Robustness:**
	- \rightarrow resistive Micromegas
	- \rightarrow robust photocathodes
- **Electronics:**
	- \rightarrow dedicated amplifiers
	- \rightarrow multi-channel digitisers

Single pad (2016) \varnothing 1 cm

Multi pad $O₁$ Cl

3.6 cm

More information about the 100-channel detector and dedicat

TOWARDS ROBUST PICOSEC MICROMEGAS PRECISE TIMING DETECTORS

Advantages and requirements

- **Advantages of resistive Micromegas:**
	- + limitation of the destructive effect of discharges
	- + stable operation in intense pion beams
	- + better position reconstruction, signal sharing
- **Objective:** profit from the advantages of the resistive Micromegas while maintaining good time resolution

Requirements for choosing the resistivity:

low enough to:

 \rightarrow minimise the voltage drop during high rate beam

 \rightarrow improve the position reconstruction

high enough to:

 \rightarrow ensure stable operation

 \rightarrow not affect the rising edge of the signal

Rate capability

Simulated voltage and gain drop vs applied voltage for different resistivities

The minimum resistivity that ensures a detector's stable operation is 10 M Ω/\Box

SIMULATIONS

for a pion beam of 1.5 cm dia. and 1.9 MHz

Simulated voltage drop across the area

All simulations by Djunes Janssens

Dependence on the rising edge of the signal

Simulated shape of the induced signal for different resistivities

Resistivity chosen for the 10x10 cm² area PICOSEC MM detector: **20 MΩ/**□

All simulations by Djunes Janssens

Multipad: 100-channel PICOSEC MM detector

- **Multipad: 100-channel detector with a 10x10 cm² area resistive MM with and**
- Production procedure as for a non-resistive Multipad with an additional prod

More information about the design and production procedures of the Multipad in the Multipad in the Multipad in

RD51 test beam campaign

- **Beam type:** CERN SPS H4 beam line, 150 GeV/c muons
- **Experimental setup:**
	- → **tracking/timing/triggering** telescope: **GEMs** + MCP PMTs
	- → **PICOSEC Micromegas (MM) detectors**
	- \rightarrow flammable gas mixture: Ne:CF₄:C₂H₆ (80:10:10)
- **Previously used electronics:** Cividec + Oscilloscope
	- \rightarrow both not scalable to multiple channels detector
- **New electronics dedicated for Multipad:**
	- \rightarrow Custom-made RF pulse amplifier cards optimised for PICOSEC
	- \rightarrow 128-channel SAMPIC digitizer

PRECISE TIMING DETECTORS

Test beam measurements - oscilloscope

• **Multipad** with a **resistive MM 20 MΩ/□,** a CsI photocathode and RF pulse amplifiers measured with an oscilloscope

Test beam measurements - oscilloscope

• **Multipad** with a **resistive MM 20 MΩ/□,** a CsI photocathode and RF pulse amplifiers measured with an oscilloscope

Test beam measurements - oscilloscope

• **Multipad** with a **resistive MM 20 MΩ/□,** a CsI photocathode and RF pulse amplifiers measured with an oscilloscope

• Preliminary results for 10x10 cm2 **resistive MM 20 MΩ/□** showed a **time resolution below 20 ps** for an individual pad!

New digitiser dedicated for 100-channel detector

• **SAMPIC Waveform TDC**

- \rightarrow 128-channel digitiser under test (instead of a 4-channel oscilloscope) possibility to
- \rightarrow 8.5 GS/s sampling frequency (instead of 10 GS/s with oscilloscope) test of achieva
- \rightarrow 64 samples maximum digitalisation ion tail is not fully included in the signal

SAMPIC digitiser de

PRECISE TIMING DETECTORS

Test beam measurements – SAMPIC (1)

- **SAMPIC readout** of a 100-channel PICOSEC detector equipped with a resistive MM 20 MΩ/□ and a CsI photocathode
- **Signal amplitude** results achieved with single p.e. (LED measurement) and with multiple p.e. (beam measurement)

Signal amplitude for **single p.e.** measurements Signal amplitude for **multiple p.e.** measurements

- Non-uniform response of the signal across the area: amplitude decrease towards the center of the detector
- Possible reason: variation in the resistive MM board planarity of 30 μ m \rightarrow Investigation of the production procedure

MARTA LISOWSKA | MPGD2022 CONFERENCE | 11-16 DECEMBER 2022 TOWARDS ROBUST PICOSEC MICROMEGAS

PRELIMINARY

PRELIMINARY

Test beam measurements – SAMPIC (2)

• SAMPIC readout of a 100-channel PICOSEC detector equipped with a resistive MM 20 MΩ/□ and a CsI photocathode

• Non-uniform response of the signal within the pads

Test beam measurements – SAMPIC (2)

• SAMPIC readout of a 100-channel PICOSEC detector equipped with a resistive MM 20 MΩ/□ and a CsI photocathode

- Non-uniform response of the signal within the pads
- Uniform time resolution within the pads
- Narrow distribution of the time resolution across the area
- **Tool to study the response of 100-channel PICOSEC detector**

PRELIMINARY

Problem with CsI and alternatives

• **First single-pad prototype:** CsI photocathode

 $+$ high quantum efficiency in comparison to other materials: \sim 10 p.e. / MIP

with 3 mm MgF₂ radiator + 3 nm Cr layer + 18 nm CsI photocathode

- can be damaged by ion back flow, sparks, discharges
- sensitive to humidity (assembly)
- Need to search for **alternative**

photocathode materials:

- \rightarrow Diamond Like Carbon (DLC)
- \rightarrow Boron Carbide (B₄C)
- \rightarrow Nanodiamonds
- → …

Ageing studies - Comparison (2)

Test beam measurements $-B_4C$ photocathodes

- **Prototype #1**: Single channel non-resistive MM, pre-amplification gap 170 μm
- **Photocathodes:** B₄C of different thicknesses*
- **Measurements procedure**:

1. Single PE measurement with LED \rightarrow 2. Beam measurement \rightarrow 3. Timing measurement

• **#PE analysis procedure**:**

1. Find maximum amplitude for each waveform 2. Plot a histogram of all maximum amplitudes 3. Fit with Polya and calculate the mean value 4. Divide beam mean amplitude by LED mean amplitude to obtain #PE for each photocathode

MARTA LISOWSKA | MPGD2022 CONFERENCE | 11-16 DECEMBER 2022 TOWARDS ROBUST PICOSEC MICROMEGAS **PRECISE TIMING DETECTORS** 17 NOTES AND THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTR
THE CISE TIMING DETECTORS 17 NOTES AND THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE C

Results for B4C of different thicknesses

• **Prototype #1**: Single channel non-resistive MM*, pre-amplification gap 170 μm

Does not follow the trend. Different thickness? Problem with the deposition?

*Produced at CERN MPT workshop

PRELIMINARY

Results for B_4C of different thicknesses

• **Prototype #1**: Single channel non-resistive MM*, pre-amplification gap 170 μm

Does not follow the trend. Different thickness? Problem with the deposition?

*Produced at CERN MPT workshop

Results for 12 nm B_4C with different prototype

• **Prototype #2**: Single channel non-resistive MM*, pre-amplification gap 120 μm, detector confirmed to work properly

*Produced at CEA Saclay

Results for 12 nm B_4C with different prototype

• **Prototype #2**: Single channel non-resistive MM*, pre-amplification gap 120 μm, detector confirmed to work properly

• Single-pad prototype equipped with a **12 nm thick B4C photocathode** showed a **time resolution below 25 ps!**

*Produced at CEA Saclay

Summary

Excellent timing performance of the new 100-channel PICOSEC MM prototype → **Multipad** with a resistive MM with a time

resolution < 20 ps for an individual pad

- Measurements with a complete readout chain → Successful readout of multiple channels
- Developments towards robust photocathodes \rightarrow Preliminary results of a single-pad prototype equipped with a **12 nm thick B4C photocathode** showed a **time resolution < 25 ps**

Future perspectives

Developments

- **Stability** \rightarrow Stable operation in intense pion beams with resistive MM Multipad
- **Robustness** \rightarrow PICOSEC MM detector with a 10x10 cm² area B₄C and DLC photocathode
- **Electronics** \rightarrow Complete readout of all 100 channels, exploring alternative electronics
- **Integration** \rightarrow Sealed detectors (clean, hermetically closed devices with high gas quality)
- **Scaling to larger area** \rightarrow Tiling 10x10 cm² modules, development of 20x20 cm² prototype

PICOSEC Micromegas Collaboration

M. Lisowska^{1,2,*}, Y. Angelis³, J. Bortfeldt⁴, F. Brunbauer¹, E. Chatzianagnostou³, K. Dehmelt⁵, G. Fanourakis⁶, K. J. Floethner^{1,7}, M. Gallinaro⁸, F. Garcia⁹, P. Garg⁵, I. Giomataris¹⁰, K. Gnanvo¹¹, T. Gustavsson¹², F.J. Iguaz¹⁰, D. Janssens^{1,13,14}, A. Kallitsopoulou¹⁰, M. Kovacic¹⁵, P. Legou¹⁰, J. Liu¹⁶, M. Lupberger^{7,17}, S. Malace¹¹, I. Maniatis^{1,3}, Y. Meng¹⁶, H. Muller^{1,17}, E. Oliveri¹, G. Orlandini^{1,18}, T. Papaevangelou¹⁰, M. Pomorski¹⁹, L. Ropelewski¹, D. Sampsonidis^{3,20}, L. Scharenberg^{1,17}, T. Schneider¹, L. Sohl¹⁰, M. van Stenis¹, Y. Tsipolitis²¹, S.E. Tzamarias^{3,20}, A. Utrobicic²², R. Veenhof^{1,23}, X. Wang¹⁶, S. White^{1,24}, Z. Zhang¹⁶, and Y. Zhou¹⁶

¹European Organization for Nuclear Research (CERN), CH-1211, Geneve 23, Switzerland ²Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ³Department of Physics, Aristotle University of Thessaloniki, University Campus, GR-54124, Thessaloniki, Greece ⁴Department for Medical Physics, Ludwig Maximilian University of Munich, Am Coulombwall 1, 85748 Garching, Germany ⁵Stony Brook University, Dept. of Physics and Astronomy, Stony Brook, NY 11794-3800, USA ⁶Institute of Nuclear and Particle Physics, NCSR Demokritos, GR-15341 Agia Paraskevi, Attiki, Greece 7 Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Nußallee 14–16, 53115 Bonn, Germany 8Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal ⁹Helsinki Institute of Physics, University of Helsinki, FI-00014 Helsinki, Finland ¹⁰IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ¹¹Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA ¹²LIDYL, CEA, CNRS, Universit Paris-Saclay, F-91191 Gif-sur-Yvette, France 13 Inter-University Institute for High Energies (IIHE), Belgium ¹⁴ Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ¹⁵Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia ¹⁶State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China ¹⁷Physikalisches Institut, University of Bonn, Nußallee 12, 53115 Bonn, Germany ¹⁸ Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, 91054 Erlangen, Germany ¹⁹CEA-LIST, Diamond Sensors Laboratory, CEA Saclay, F-91191 Gif-sur-Yvette, France 20 Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece ²¹National Technical University of Athens, Athens, Greece ²²Institute Ruder Bosković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia ²³Bursa Uludağ University, Görükle Kampusu, 16059 Niufer/Bursa, Turkey ²⁴University of Virginia, USA

Thank you for your attention!

CONTACT: MARTA.LISOWSKA@CERN.CH

Back up slides

MARTA LISOWSKA | MPGD2022 CONFERENCE | 11-16 DECEMBER 2022 TOWARDS ROBUST PICOSEC MICROMEGAS nds nobost Picosec MicholMegas
PRECISE TIMING DETECTORS 26

Classical vs PICOSEC Micromegas

Signal arrival time jitter

• **Classical Micromegas:**

- \rightarrow different position of ionisation clusters at direct gas ionisation
- \rightarrow signal arrival time jitter due to drift velocity and average ionisation length

$$
\sigma_t = \frac{\sigma_I}{v_d} = \frac{355 \,\mu m}{84 \,\frac{\mu m}{ns}} \approx 4 \, ns
$$

Estimated time jitter for COMPASS Micromegas

• **PICOSEC Micromegas:**

 \rightarrow due to high electric field, time jitter before first amplification minimised

L. Sohl, RD51 Miniweek (2020), link

Ch

PICOSEC Micromegas

Signal arrival time

- Signal arrival time (SAT) = <T_{e-peak}>
	- \rightarrow SAT depends on e-peak charge
	- \rightarrow SAT can be reduced by higher drift field and bigger pulses

Location of first ionisation determines length of avalanche

- \rightarrow longer avalanches result in bigger e-peak charge
- \rightarrow bigger e-peak charge reduces SAT

K. Kordas, VCI 2019 conference, link

PICOSEC Micromegas

Timing properties

- Reference device with better timing precision than the PICOSEC is needed to quantify
- Sigmoid function is fitted to the leading edge of the electron peak. Position of the sign
- Signal arrival time (SAT): the difference between PICOSEC and reference detector timin
- Time resolution of the detector is defined as standard deviation of SAT distribution.

A. Utrobičić, VCI 2022 conference, link

TOWARDS ROBUST PICOSEC MICROMEGAS PRECISE TIMING DETECTORS

Preamplification gap

Uniform thickness

- **Problem:** first 19 channels PICOSEC Micromegas prototype:
	- $-$ active area of 3.6 cm in diameter
	- deformations in the range of 30 μ m in the active area
	- time error and non-uniform response of the detector
	- problem even more pronounced for larger area prototype

Problem of non-uniform preamplification gap **Deformation of 19 channels PICOS** Deformation of 19 channels PICOSEC MM, A. Aune et al., links and the al., links and the al., links and the al., links and the al., links and th

PRECISE TIMING DETECTORS

Multipad: 100 channels PICOSEC Mic

From simulations and design to production, measurements and assembly

- **Requirement:** Precise mechanics to preserve uniform thickness of the preamplification gap
- **Current status:** 100 channels PICOSEC Micromegas detector with uniform thickness $($10 \mu m$)$ of the preamplification gap

Mechanical aspects: A. Utrobičić, RD51 CM, link More details: A. Utrobičić, VCI 2022 conference, link

PRECISE TIMING DETECTORS AND THE CONFIDENTIAL CONTINUES. THE CONFIDENTIAL CONTINUES IN THE CONFIDENTIAL CONTINU
PRECISE TIMING DETECTORS

Photocathode characterisation

QE measurements - Reflective mode

PRECISE TIMING DETECTORS

Photocathode characterisation

QE measurements - Transmission mode

PRECISE TIMING DETECTORS

Photocathode characterisation

Ageing studies - Irradiation mode

3. Irradiated sample (grounded): Attraction of ions from avalanche Accumulation of charge

2. Multiplication wires (positive HV): Attraction of primary electrons Avalanche multiplication Production of electrons and ions

1. X-ray beam in a gas chamber: Ionization of particles Creation of primary charge

Ageing studies - CsI 058 (18 nm)

40

Charge accumulated (mC/cm2)

Integration

Sealed detectors

- **Advantages of sealed detectors:**
	- $+$ clean, hermetically closed devices with high gas quality
	- + high ratio of active area to the size of the device
- **Current status:**
	- \rightarrow one 10x10 cm² titanium housing ready to assembly \rightarrow large area robust photocathode (DLC, B₄C) required \rightarrow gas connectors (pinch-off tubes) ready to assembly \rightarrow closing procedure: electron beam welding
	- \rightarrow last step: filling the detector with gas mixture

