

ISIS Neutron and Muon Source

Operation of the µRWELL detectors with ³He-based gas mixtures

Raheema Hafeji Davide Raspino Erik Schooneveld Nigel Rhodes

MPGD2022, Dec 13, 2022

5 muon instruments 32 neutron instruments

Physics, chemistry, materials science, geology, engineering, and biology.

Endeavour program will expand ISIS capabilities to meet current and future challenges in areas such as Materials for the Future; Smart, Flexible and Clean Energy Technologies; Advanced Manufacturing; and Biosciences and Healthcare.

Science and Technology Facilities Council

Outline

- µRWELL
- ³He-CF₄ gas mixture
- Measurements and results

Gain

Rate Capability

• Conclusions and Future measurements

µRWELL vs GEM

- Solved major limits of operating GEMs in ³He-CF₄ gas mixture
- Gain in a single stage comparable to the gain of a triple GEM
- DLC provides spark protection

G.Bencivenni et al., 2015 JINST 10 P02008. https://doi.org/10.1088/1748-0221/10/02/p02008

µRWELL vs GEM

- Solved major limits of operating GEMs in ³He-CF₄ gas mixture
- Gain in a single stage comparable to the gain of a triple GEM
- DLC provides spark protection
- Lower rate capabilities than GEMs

Science and Technology Facilities Council

G.Bencivenni et al., 2015 JINST 10 P02008. https://doi.org/10.1088/1748-0221/10/02/p02008

New ³He detectors for neutron scattering

- 2009 increase cost of ³He
- Very low availability
- Situation improving
- Budget and technical challenges for large area neutron detectors
- It can be recycled and reused indefinitely

Eur. Phys. J. Plus (2014) 129: 236

New ³He detectors for neutron scattering

- 2009 increase cost of ³He
- Very low availability
- Situation improving
- Budget and technical challenges for large area neutron detectors
- It can be recycled and reused indefinitely
- Small area (200 x 200 mm²)
- High efficiency (> 70% at 25 meV)
- High rate (>1 MHz/full detector area)
- High spatial resolution (<1 mm FWHM)

Eur. Phys. J. Plus (2014) 129: 236

New ³He detectors for neutron scattering

- 2009 increase cost of ³He
- Very low availability
- Situation improving
- Budget and technical challenges for large area neutron detectors
- It can be recycled and reused indefinitely
- Small area (200 x 200 mm²)
- High efficiency (> 70% at 25 meV)
- High rate (>1 MHz/full detector area)
- High spatial resolution (<1 mm FWHM)
- MPGD ideal solution

Helium-3 Reserve-Disbursement Scenarios (USA)

Eur. Phys. J. Plus (2014) 129: 236

³He/CF₄ gas mixtures

 $n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 764 \text{ keV}$

Efficiency = 1. – exp (-
$$n \cdot P \cdot \sigma \cdot d$$
)

$$\begin{split} n &= number \; density = 2.7 \; x \; 10^{19} \, / cm^3 \text{-bar} \\ P &= gas \; pressure \; [bar] \\ \sigma(\lambda) &= cross \; section \; [cm^2] \; (function \; of \; \lambda) \\ d &= gas \; depth \; [cm] \end{split}$$

³He/CF₄ gas mixtures

$n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 764 \text{ keV}$

- projected in one-dimension
 - FWHM $\sim 0.8 \text{ x proton range}$

V. Radeka, DOE BES Neutron&Photon Detector Workshop, Aug 1-3, 2012

Science and Technology Facilities Council

K. Miuchi, et al. Nucl. Instrum. Meth A 517 (2004) 219–225.

³He/CF₄ gas mixtures

 $n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 764 \text{ keV}$

V. Radeka, DOE BES Neutron&Photon Detector Workshop, Aug 1-3, 2012

- Sealed vessel
- Certified up to 7bar
- 1bar ³He
- 1 to 6 bar of CF_4 in step of 1.0 bar

- Sealed vessel
- Certified up to 7bar
- 1bar ³He
- 1 to 6 bar of CF_4 in step of 1.0 bar
- Active area 50x50mm²
- DLC $80M\Omega/\Box$
- Anode segmented in four strips
- Joined together for this test
- Drift volume 16mm thick

- Sealed vessel
- Certified up to 7bar
- 1bar ³He
- 1 to 6 bar of CF_4 in step of 1.0 bar
- Active area 50x50mm²
- DLC $80M\Omega/\Box$
- Anode segmented into four strips
- Joined together for this test
- Drift volume 16mm thick
- Bipolar preamp LTC6226/OPA856

Board (Op-amp + feedback res)	Width at 10% PH (ns)	Noise FWHM (mV)	PH Peak (mV)	S/N
LTC6226 + 27kΩ	413	51.7	~490	9.5
OPA856+ 15kΩ	226	16.1	~450	27.9
OPA856 +1.8kΩ	175	14.6	~430	29.5

- Sealed vessel
- Certified up to 7bar
- 1bar ³He
- 1 to 6 bar of CF_4 in step of 1.0 bar
- Active area 50x50mm²
- DLC $80M\Omega/\Box$
- Anode segmented into four strips
- Joined together for this test
- Drift volume 16mm thick
- Bipolar preamp LTC6226/OPA856

Board (Op-amp + feedback res)	Width at 10% PH (ns)	Noise FWHM (mV)	PH Peak (mV)	S/N
LTC6226 + 27kΩ	413	51.7	~490	9.5
ΟΡΑ856+ 15kΩ	226	16.1	~450	27.9
OPA856 +1.8kΩ	175	14.6	~430	29.5

PH spectrum

E_d = 1.875 kV/cm

1 bar of 3 He and 1 bar of CF₄

 $V_{\mu RWELL}$ = 480 V

Primary Charge 2.26 fC

Gain ~10

PH vs CF₄ Pressure and µRWELL voltage

Gain Measurements

Gain Measurements

Science and Technology Facilities Council

Gain Measurements

Science and Technology Facilities Council

Scan in drift field

1bar 3 He +1bar of CF₄

 $V_{\mu RWELL}$ =500 V

Maximum moves to higher E_{d} by increasing the CF_{4} pressure

Electron attachment vs electron collection in the holes

Rate Capability Test Setup

Science and Technology Facilities Council

Neutron rate vs ToF

Facilities Council

25

Gain vs Rate

Gain reduction less than **5%** up to **250kHz** with a 10x10mm²

1bar ³He and 1bar CF₄ $E_d=2 \text{ kV/cm}$ $V_{\mu RWELL}=500V$

Gain vs Rate

Gain reduction less than **5%** up to **250kHz** with a 10x10mm²

Gain reduction up to **15%** at a neutron rate of **1.8MHz** over 30x30cm²

Gain does not follow the same pattern increasing and decreasing the rate on 30x30cm² beam

Beam time structure and gain variation

Beam time structure and gain variation

Beam time structure and gain variation

Rate/Unit area

Negligible rate loss up to 100kHz/cm²

6% loss at 250kHz/cm² on the 10x10mm²

17.5% loss at 250kHz/cm² on the 30x30mm²

1bar ³He and 1bar CF₄ $E_d=2 \text{ kV/cm}$ $V_{\mu RWELL}=500V$

G. Bencivenni et al., 2019 JINST 14 P05014. https://doi.org/10.1088/1748-0221/14/05/p05014

Conclusions

- A new MPGD able to operate up to 6bar CF₄ Potential sub-millimetre position resolution 2D readout
- Rate capability up to 100kHz/cm²
- Five current ISIS instruments might immediately benefit from a detector with this performance

Conclusions

- A new MPGD able to operate up to 6bar CF₄ Potential sub-millimetre position resolution 2D readout
- Rate capability up to 100kHz/cm²
- Five current ISIS instruments might immediately benefit from a detector with this performance

Next Steps

- Measure the position resolution
- Evaluate µRWELLs layout to push the rate capability even further

Next Steps

$2D\;\mu\text{RWELL}$

Measure position resolution

- as a function of CF₄ pressure
- as a function of neutron rate

128x128 XY strips

0.4mm pitch

Assembly procedure

Clean room class 100

White and UV light to highlight specks of dust

Removed with brush and vacuum cleaner

Seal the volume and check the helium leak rate (10⁻¹⁰ mbar/l/s)

Bake at 100°C under vacuum (10⁻⁷mbar) for +48h

Fill with the desired gas mixture

<u>Materials</u> PEEK, copper, FR4, kapton, gold, ceramic

