New (TH)GEM coating materials characterised using spectroscopy methods

Berkin Ulukutlu¹, Thomas Klemenz¹, Piotr Gasik², Laura Fabbietti¹, Tobias Waldmann¹, Lukas Lautner¹ ¹ TUM School of Natural Sciences, Garching, Germany 2 GSI/FAIR GmbH, Darmstadt, Germany

Micro Pattern Gaseous Detectors 2022

15th December 2022, Weizmann Institute of Science, Rehovot, Israel

Dis[charges in \(TH](https://doi.org/10.1016/S0168-9002(01)00931-7))GEMs

- GEM d[ischarges \(sparks\) have been wid](https://doi.org/10.1016/j.nima.2019.05.057)ely studied
- There [are different types of GEM disc](https://iopscience.iop.org/article/10.1088/1748-0221/14/08/P08024)harges
	- **Primary discharges** occur inside GEM hole and are most prominent
	- **Secondary discharges** occur in the gap between GEM and anode and are more dangerous
- Methods have been developed to mitigate them during operation
	- RC components, gas, foil properties, etc.
		- S. Bachmann et al. NIM A 479 (2002) 294-308
		- P. Gasik et al. NIM A 870 (2017) 116
		- A. Deisting et al. NIM A 937 (2019) 168-180
		- L. Lautner et al. JINST 14 (2019) P08024
		- …

Sec[ondary disch](https://doi.org/10.1016/j.nima.2019.05.057)arges in (T

- Time delay in the order of μs between primary and secondary discharge
- Steep onset of secondary discharge probability vs E_{ind} below amplification values
- However, there are remaining questions especially concerning their formation mechanisms
	- Thermal processes considered as main mechanism of secondary electron emission
		- A. Deisting et al. NIM A 937 (2019) 168-180
		- A. Utrobicic et al. NIM A 940 (2019) 262-273

 $1._C$

 $0.\overline{8}$

(TH)GEMs with different coating

- So far there are not many systematic studies investigating the effectvarious performance criteria
	- Conductive top and bottom electrode layers are typically made of copper
- GEMs, THGEMs and SH-THGEMs (single hole) with various claddin
	- Results from the SH-THGEMs summarized in B. Ulukutlu et al. NIM A 1019 (20

15.12.2022 - MPGD22 - New (TH)GEM Coating Materials **4** Al GEM Al SH-THGEM Ta SH-THGEM W SH-THGEM

Experimental setup

- GEM detector
	- Mixed alpha source $(^{239}$ Pu+ 241 Am+ 244 Cm)
	- Gas mixture: $Ar-CO₂$ 90-10
	- Drift gap = 27 mm, drift field = 400 V/cm
	- Induction gap = 2 mm
- Discharges are counted/identified with an oscilloscope via the electrical signal they induce on the readout electrode
- Light emitted from discharges is studied with spectroscopy methods
	- A transparent mesh anode and a window is used
	- Light is collected with a collimating lens
	- Emission spectrum is analysed with Ocean Optics QE65000 (UV-VIS-NIR) spectrometer

Spectra of primary GEM discharges

- Measuring emission spectra of the light emitted during primary discharges
- Calibrated spectrometer and removed background
- Identifying emission lines via peak fitting and comparing to spectroscopy database
- Longer wavelength regions dominated by the emission lines from the used gas mixture $(e.g. Ar-CO₂)$

Spectra of primary GEM di

- Copper emission lines observed!
	- Presence of foil cladding material in the hot discharge plasma
	- Vaporization of the copper layer
	- Can be observed indirectly via the damage caused by discharges

Effects of discharges on a GEM hole [J.A. Merlin, RD51 Collaboration Meeting 2018]

Comparing different GEM materials

- Comparison with aluminium GEM
	- Aluminium emission lines observed
	- Comparable intensity of peaks from the excitation of the used gas
- Further confirmation of the presence of foil material in discharge plasma
- Correct identification of the emission lines

Comparing different THGEM materials

- Using single-hole THGEMs for improved consistency in measured light from the constrained discharge location
- Very similar emission spectra in all SH-THGEMs
	- Spectra dominated by the gas emission lines
	- None of the used THGEMs lead to emission lines corresponding to foil cladding material
- Reduced material vaporization from discharges in THGEM hole geometry
	- Better heat dissipation due to thicker cladding material and larger area
- Secondary discharges still prevalent in THGEMs
	- No direct connection between material vaporization and secondary discharge formation

Stability against primary d

 $\mathsf C$

 $\mathsf I$

- Primary discharges occur at v[ery similar applied](https://doi.org/10.1016/j.nima.2017.07.042) fields regardless of material
- Streamer mechanism does not depend on the cathode material
- Charge density as the driving factor for primary discharge formation
	- Critical charge limit shown to be dictated by the used gas mixture and field geometry inside hole [NIM A 870 (2017) 116]

\triangleright No material dependence expected and none observed!

Secondary discharge stabi

Less stab

Multi-hole Mo-THGEM

- Further investigations on Mo stability
- First, full-scale Mo-THGEM produced at the CERN MPT lab
	- 25 μm thick molybdenum foil glued on the fiberglass PCB material
- Cu multi-hole THGEM for reference
- Same dimensions and tools used for production
- Special surface treatment to ensure smoothness
	- Polishing and cleaning

Secondary discharge stabi

Time delay

- Duration between the primary and secondary discharges
- Most of the SH-THGEMs are consistent with previous observations with GEMs
- Molybdenum SH-THGEM is again an outlier
- Both tested multi-hole THGEMs lead to quicker secondary discharges

Conclusion and outlook

- a. Vaporization of foil material observed for GEM foils
- b. Vaporization rate significantly reduced with THGEMs \rightarrow better heat dissipation
- 2. Significant variance in secondary discharge stability observed between samples
	- a. Not easily explained by material properties and could be related to oxide layers or quality of the hole edges
	- b. Surface quality of the structure could be the key
- 3. Further visual studies with multi-hole THGEMs to rule out local hotspots
	- a. Microscope imaging of the THGEM holes surfaces

New (TH)GEM coating materials characterized using spectroscopy methods

B. Ulukutlu^{a,*}, P. Gasik^{b,c}, T. Waldmann^a, L. Fabbietti^a, T. Klemenz^a, L. Lautner^a, R. de Oliveira^d, S. Williams^d

15.12.2022 - MPGD22 - New (TH)GEM Coating Materials
Angle Material Scale Material Scale Material Scale Material Scale Material Scale Material of the Scale Helmholtzzentrum für Schwerionenforschung GmbH (GSI), Darmstadt, Ge

^d European Organization for Nuclear Research (CERN), Geneva, Switzerland

Contents lists available at ScienceDirect

Thank you for your attention!

Any questions?

Funded by

Deutsche

Forschungsgemeinschaft

German Research Foundation

DFG FA 898/5-1 Sachbeihilfe: "Eine umfassende Untersuchung der Entladungserzeugungsmechanismen in Micro-Pattern Gas Detektoren"

Formation of primary dischar

Charge density as the driving factor for primary discharge formation

Streame GEM hole le

• Primary discharge occurs when a critical number of charge carriers is exceeded within the hole

15.12.2022 - MPGD22 - New (THGEM) Coating Materials **17**

Primary discharge limits for T

This theory was also shown to explain the observed reduced prima

15.12.2022 - MPGD22 - New (THGEM) Coating Materials **1888 Absolute Gain**

Delayed secondary discharges

More dangerous discharge in the transfer/induction gap appearing μs after the primary spark

- Mitigation strategies established
	- \Box L. Lautner, et al. JINST 14 (2019) no.08, P08024
	- \Box A. Deisting, et al. NIM A 937 (2019) 168-180

For discharges to occur a source of electrons is needed. This source is not fully understood for delayed secondary discharges.

• Leading theory:

Heating of the cathode after the primary discharge

- \Box A. Deisting, et al. NIM A 937 (2019) 168-180
- \Box A. Utrobicic, et al. NIM A 940 (2019) 262-273

a) Primary discharge

b) Secondary discharge

[A. Deisting, et al. NIM A 937 (2019) 168-180]

• Depends on the transport properties of the used gas • Up to 100 μs in Argon based gas mixtures

Time delay

• Shorter delay with increased induction field

• The time difference between the primary and secondary discharge events

Thermionic emission of electrons

• Increased activity around the discharged hole observed to persist with applied induction field

Secondary discharges in inverted field

- Secondary discharges also occur even if you apply the induction field in the opposite direction
	- At similar field strengths
	- With similar time delays

Secondary discharge probability as a function of the applied induction field strength

[A. Deisting, et al. NIM A 937 (2019) 168-180]

Calibration of the spectrometer

• Using a characterized deuterium lamp for the intensity calibration

Background subtraction on spectra

• The continuous background distribution originates from the broad emission from molecules in the plasma

Spectra GEM vs SH-THGEM

No cladding material emission lines observed with single hole THGEMs

Copper GEM vs SH-THGEM **Aluminium GEM** vs SH-THGEM \rightarrow None or much less vaporization of the foil material

Spectra of secondary discharges

- No major differences observed in emission spectra from primary and secondary discharges
- Slightly increased overall intensity
	- Higher light emission with secondary discharges
- The underlying physical light emission processes same for both discharge types

Different gas mixtures

- THGEM spectra were also measured using Ar (100) and Neon (100) gas mixtures
- Corresponding gas lines can be identified

Sputtering vs vaporization

Could sputtering be the reason we observe foil material in discharge plasma or explain the secondary discharge hierarchy?

Probably not:

- Burn marks observed mainly on bottom side of foils
	- Ions would cause sputtering on the top side
- No material lines observed with THGEMs
	- THGEM foils having thicker metal layer shouldn't decrease sputtering yield
- Sputtering properties don't scale with the observed secondary discharge stability hierarchy of the used materials

Argon sputtering properties of the used materials

[N. Matsunami, et al. in Energy Dependence of the Yields of Ion-Induced Sputtering of Monatomic Solids, IPPJ-AM-32 (Institute of Plasma Physics, Nagoya University, Japan, 1983)]