New (TH)GEM coating materials characterised using spectroscopy methods

Berkin Ulukutlu¹, **Thomas Klemenz¹**, Piotr Gasik², Laura Fabbietti¹, Tobias Waldmann¹, Lukas Lautner¹ ¹TUM School of Natural Sciences, Garching, Germany ²GSI/FAIR GmbH, Darmstadt, Germany

Micro Pattern Gaseous Detectors 2022

15th December 2022, Weizmann Institute of Science, Rehovot, Israel

Discharges in (TH)GEMs

- GEM discharges (sparks) have been widely studied
- There are different types of GEM discharges
 - **Primary discharges** occur inside GEM hole and are most prominent
 - Secondary discharges occur in the gap between GEM and anode and are more dangerous
- Methods have been developed to mitigate them during operation
 - RC components, gas, foil properties, etc.
 - <u>S. Bachmann et al. NIM A 479 (2002) 294-308</u>
 - <u>P. Gasik et al. NIM A 870 (2017) 116</u>
 - <u>A. Deisting et al. NIM A 937 (2019) 168-180</u>
 - L. Lautner et al. JINST 14 (2019) P08024
 - ...

Types of discharges in (TH)GEM detectors

Primary discharge in a GEM hole

Secondary discharge between GEM and anode

Secondary discharges in (TH)GEMs

- Time delay in the order of µs between primary and secondary discharge
- Steep onset of secondary discharge probability vs E_{ind} below amplification values
- However, there are remaining questions especially concerning their formation mechanisms
 - Thermal processes considered as main mechanism of secondary electron emission
 - <u>A. Deisting et al. NIM A 937 (2019) 168-180</u>
 - <u>A. Utrobicic et al. NIM A 940 (2019) 262-273</u>

Signals induced by discharges on the readout electrode

(TH)GEMs with different coating materials

- So far there are not many systematic studies investigating the effects of material choice in (TH)GEMs on various performance criteria
 - Conductive top and bottom electrode layers are typically made of copper
- GEMs, THGEMs and SH-THGEMs (single hole) with various cladding materials were produced and studied
 - Results from the SH-THGEMs summarized in <u>B. Ulukutlu et al. NIM A 1019 (2021) 165829</u>

ALGEM	ALSH-THGEM	Ta SH-THGEM	W SH-THGEM	Mo THGEM

	Conductivity [10 ⁶ S/m]	Work function [eV]	Melting point [°C]	Boiling point [°C]	Thermal conductivity [W/m*K]	Density [g/cm³]
Al	36.9	4.08	660	2470	237	2.702
W	8.9	4.5	3422	5550	174	19.35
Cu	58.7	4.7	1083	2575	386	8.96
Inox	1.37	4.4	1510	2750*	16.3	7.85
Та	7.6	4.22	3017	5365	57.5	16.65
Мо	18.7	4.5	2623	4651	138	10.22

*for Fe

15.12.2022 - MPGD22 - New (TH)GEM Coating Materials

Experimental setup

- GEM detector
 - Mixed alpha source (²³⁹Pu+²⁴¹Am+²⁴⁴Cm)
 - Gas mixture: Ar-CO₂ 90-10
 - Drift gap = 27 mm, drift field = 400 V/cm
 - Induction gap = 2 mm
- Discharges are counted/identified with an oscilloscope via the electrical signal they induce on the readout electrode
- Light emitted from discharges is studied with spectroscopy methods
 - A transparent mesh anode and a window is used
 - Light is collected with a collimating lens
 - Emission spectrum is analysed with Ocean Optics QE65000 (UV-VIS-NIR) spectrometer

Spectra of primary GEM discharges

- Measuring emission spectra of the light emitted during primary discharges
- Calibrated spectrometer and removed background
- Identifying emission lines via peak fitting and comparing to spectroscopy database
- Longer wavelength regions dominated by the emission lines from the used gas mixture (e.g. Ar-CO₂)

500

600

x10⁻⁶

G

32.

Cu1

4.0

3.5

3.0

2.5

0.0

300

400

Spectra of primary GEM discharges

10 MΩ : 6.4 nF (2500 discharge

- Copper emission lines observed! ٠
 - Presence of foil cladding material in the hot discharge ٠ plasma
 - Vaporization of the copper layer

10 MΩ : 6.4 nF (10 discharges)

Can be observed indirectly via the damage caused by ٠ discharges

10 MΩ : 6.4 nF (100 discharges)

Effects of discharges on a GEM hole [J.A. Merlin, RD51 Collaboration Meeting 2018]

removed background

Cu GEM

800

Wavelength (nm)

700

912.3 nm

900

ТШΠ

Comparing different GEM materials

- Comparison with aluminium GEM
 - Aluminium emission lines observed
 - Comparable intensity of peaks from the excitation of the used gas
- Further confirmation of the presence of foil material in discharge plasma
- Correct identification of the emission lines

Comparing different THGEM materials

- Using single-hole THGEMs for improved consistency in measured light from the constrained discharge location
- Very similar emission spectra in all SH-THGEMs
 - Spectra dominated by the gas emission lines
 - None of the used THGEMs lead to emission lines corresponding to foil cladding material
- Reduced material vaporization from discharges in THGEM hole geometry
 - Better heat dissipation due to thicker cladding material and larger area
- Secondary discharges still prevalent in THGEMs
 - No direct connection between material vaporization and secondary discharge formation

• Streamer mechanism does not depend on the cathode

- Charge density as the driving factor for primary discharge formation
 - Critical charge limit shown to be dictated by the used gas mixture and field geometry inside hole [NIM A 870 (2017) 116]

> No material dependence expected and none observed!

Stability against primary discharges

- Primary discharges occur at very similar applied fields ٠ regardless of material
- material

THGEM cladding material	Applied voltage across foil [V]
Copper	1680
Aluminium	1690
Molybdenum	1700
Stainless steel	1685
Tantalum	1700
Tungsten	1683

Onset of primary discharge formation

Secondary discharge stability

• Secondary discharge probability:

$$P_2 = \frac{N_{\text{Secondary Discharge}}}{N_{\text{Primary Discharge}}}$$

- Data for Cu GEM from <u>NIM A 937 (2019) 168</u>
- **Molybdenum SH-THGEM** displays especially high stability
 - Is this due to the material properties?
 - The observed hierarchy cannot be explained by any of the material properties expected to be relevant for discharge formation
 - Surface quality?

Multi-hole Mo-THGEM

- Further investigations on Mo stability
- First, full-scale Mo-THGEM produced at the CERN MPT lab
 - 25 µm thick molybdenum foil glued on the fiberglass PCB material
- Cu multi-hole THGEM for reference
- Same dimensions and tools used for production
- Special surface treatment to ensure smoothness
 - Polishing and cleaning

Mo THGEM

Secondary discharge stability

- Both multi-hole THGEM samples are stable against secondary discharges compared to previous results from:
 - <u>A. Deisting et al. NIM A 937 (2019) 168-180</u>
 - A. Utrobicic et al. NIM A 940 (2019) 262-273
- The enhanced stability of molybdenum not replicated with the multi-hole Mo THGEM
 - Polished Cu THGEM is equally stable
- Effect of surface properties more than material properties?
 - Flipping THGEMs (vs. drilling direction) observed to make no difference

Time delay

- Duration between the primary and secondary discharges
- Most of the SH-THGEMs are consistent with previous observations with GEMs
- Molybdenum SH-THGEM is again an outlier
- Both tested multi-hole THGEMs lead to quicker secondary discharges

Conclusion and outlook

- a. Vaporization of foil material observed for GEM foils
- b. Vaporization rate significantly reduced with THGEMs \rightarrow better heat dissipation
- 2. Significant variance in secondary discharge stability observed between samples
 - a. Not easily explained by material properties and could be related to oxide layers or quality of the hole edges
 - b. Surface quality of the structure could be the key
- 3. Further visual studies with multi-hole THGEMs to rule out local hotspots
 - a. Microscope imaging of the THGEM holes surfaces

Nuclear Inst. and Methods in Physics Research, A 1019 (2021) 165829

New (TH)GEM coating materials characterized using spectroscopy methods

B. Ulukutlu ^{a,*}, P. Gasik ^{b,c}, T. Waldmann ^a, L. Fabbietti ^a, T. Klemenz ^a, L. Lautner ^a, R. de Oliveira ^d, S. Williams ^d

^a Physik Department, Technische Universität München, Munich, Germany
^b GSI Helmholtzzentrum für Schwerionenforschung GmbH (GSI), Darmstadt, Germany
^c Facility for Antiproton and Ion Research in Europe GmbH (FAIR), Darmstadt, Germany
^d European Organization for Nuclear Research (CERN). Geneva. Switzerland

Thank you for your attention!

Any questions?

Funded by

DFG Deutsche Forschungsgemeinschaft

German Research Foundation

DFG FA 898/5-1 Sachbeihilfe: "Eine umfassende Untersuchung der Entladungserzeugungsmechanismen in Micro-Pattern Gas Detektoren"

Formation of primary discharges

- Charge density as the driving factor for primary discharge formation
 - Primary discharge occurs when a critical number of charge carriers is exceeded within the hole

Streamer development in GEM hole leading to primary discharges

Standard GEM

Gas	$Q_{ m crit}$		
Ar-CO ₂ (90-10)	$(4.7 \pm 0.6) \times 10^6$		
Ne-CO ₂ (90-10)	$(7.3 \pm 0.9) \times 10^{6}$		

ТЛП

Primary discharge limits for THGEMs

• This theory was also shown to explain the observed reduced primary discharge stability of THGEMs

l1.2x 11.2	cm ² THGEM
------------	-----------------------

	THG	EM	GEM	
Gas	$\langle Q_{ m crit} angle$	<i>t</i> _{int}	$Q_{ m crit}$	<i>t</i> _{int}
	$[\times 10^{6} e]$	[ns]	$[\times 10^{6} e]$	[ns]
Ne-CO ₂ (90-10)	7.1 ± 2.2	30–210	7.3 ± 0.9	20–90
Ar-CO ₂ (90-10)	4.3 ± 1.5	20–110	4.7 ± 0.6	15–50
Ar-CO ₂ (70-30)	2.5 ± 0.9	40–310	_	_

[P.Gasik, L.Lautner et al. NIM A 1047 (2022) 167730]

See also talk from P. Gasik tomorrow!

Delayed secondary discharges

More dangerous discharge in the transfer/induction gap appearing μ s after the primary spark

- Mitigation strategies established
 - L. Lautner, et al. JINST 14 (2019) no.08, P08024
 - □ A. Deisting, et al. NIM A 937 (2019) 168-180

For discharges to occur a source of electrons is needed. This source is not fully understood for delayed secondary discharges.

• Leading theory:

Heating of the cathode after the primary discharge

- □ A. Deisting, et al. NIM A 937 (2019) 168-180
- A. Utrobicic, et al. NIM A 940 (2019) 262-273

a) Primary discharge

b) Secondary discharge

[A. Deisting, et al. NIM A 937 (2019) 168-180]

Time delay

• The time difference between the primary and secondary discharge events

- Depends on the transport properties of the used gas
- Up to 100 μs in Argon based gas mixtures
- Shorter delay with increased induction field

Thermionic emission of electrons

• Increased activity around the discharged hole observed to persist with applied induction field

Secondary discharges in inverted field

- Secondary discharges also occur even if you apply the induction field in the opposite direction
 - At similar field strengths
 - With similar time delays

Secondary discharge probability as a function of the applied induction field strength

[A. Deisting, et al. NIM A 937 (2019) 168-180]

Calibration of the spectrometer

• Using a characterized deuterium lamp for the intensity calibration

Background subtraction on spectra

• The continuous background distribution originates from the broad emission from molecules in the plasma

Spectra GEM vs SH-THGEM

ТИП

No cladding material emission lines observed with single hole THGEMs

→ None or much less vaporization of the foil material Copper GEM vs SH-THGEM

Aluminium GEM vs SH-THGEM

Spectra of secondary discharges

- No major differences observed in emission spectra from primary and secondary discharges
- Slightly increased overall intensity
 - Higher light emission with secondary discharges
- The underlying physical light emission processes same for both discharge types

Different gas mixtures

- THGEM spectra were also measured using Ar (100) and Neon (100) gas mixtures
- Corresponding gas lines can be identified

Sputtering vs vaporization

Could sputtering be the reason we observe foil material in discharge plasma or explain the secondary discharge hierarchy?

Probably not:

- Burn marks observed mainly on bottom side of foils
 - Ions would cause sputtering on the top side
- No material lines observed with THGEMs
 - THGEM foils having thicker metal layer shouldn't decrease sputtering yield
- Sputtering properties don't scale with the observed secondary discharge stability hierarchy of the used materials

Argon sputtering properties of the used materials

[N. Matsunami, et al. in Energy Dependence of the Yields of Ion-Induced Sputtering of Monatomic Solids, IPPJ-AM-32 (Institute of Plasma Physics, Nagoya University, Japan, 1983)]