Elisabetta Baracchini

Gran Sasso Science Institute & Istituto Nazionale Fisica Nucleare

Negative ion drift with optical readout at atmospheric pressure

Daniele Pierluigi⁴, Davide Pinci^{7,*}⁰, Atul Prajapati^{2,3}, Francesco Renga⁷⁰, Filippo Rosatelli⁴, Alessandro Russo⁴, Joaquim Marques Ferreira dos Santos¹, Giovanna Saviano^{4,14}, Neil John Curwen Spooner¹¹, Roberto Tesauro⁴, Sandro Tomassini⁴ and Samuele Torelli^{2,3}

uropean Research Coun

The 7th International Confefence on Micro Patter Gaseous Detectors 2022

See F. Petrucci talk @ 16.40

experiment

F. D. Amaro et al [CYGNO Collaboration], Instruments, Volume 6, Issue 1

High precision 3D optical TPC for directional Dark Matter searches and solar neutrino spectroscopy

https://web.infn.it/cygnus/

Example 3D TPC with optical readout via PMT + sCMOS *He:CF4 @ 1 atm*

JINST 13 (2018) no.05, P05001

He:CF4 @ 1 atm **Example 19 A.m.**
Example 19 A.m. S is the Search of Search Street Search Search Street Search Search Search Street Search Search

JINST 13 (2018) no.05, P05001

He:CF4 @ 1 atm **Example 10 SO TPC with optical readout via PMT + sCMOS**

sCMOS:

high granularity X-Y + energy measurements

1/3 noise w.r.t. CCDs Market pulled Single photon sensitivity Decoupled from target Large areas with proper optics

JINST 13 (2018) no.05, P05001

He:CF4 @ 1 atm **Example 10 SO TPC with optical readout via PMT + sCMOS**

sCMOS: high granularity X-Y + energy measurements

1/3 noise w.r.t. CCDs Market pulled Single photon sensitivity Decoupled from target Large areas with proper optics

JINST 13 (2018) no.05, P05001

He:CF4 @ 1 atm **Example 13 C X G N O :3D TPC with optical readout via PMT + sCMOS**

JINST 13 (2018) no.05, P05001

sCMOS: high granularity X-Y + energy measurements

1/3 noise w.r.t. CCDs Market pulled Single photon sensitivity Decoupled from target Large areas with proper optics

lonization clusters lonizing track **Photons** 20 30 40 50 (mm) 12 *+ SF6 for negative ion drift* erc European Research Council

Imaging tracks with

S

G

S G **Negative ion drift: reduced diffusion & improved tracking**

- \bullet Electronegative dopant in the gas mixture (CS₂, $CH₃NO₂, ...$
- $\frac{1}{2}$ Primary ionization electrons captured by electronegative gas molecules at O(100) um
- Anions drift to the anode acting as the effective image carrier instead of the electrons
- \bullet Longitudinal and transverse diffusion reduced to thermal limit thanks to the large mass of the charge carrier
	- Allow for realisation of larger TPC volume with same (or improved) tracking performance
- $\frac{1}{2}$ Negative ion drift velocity is O(cm/ms), compared to O(cm/us) electon drift velocity because of larger mass
	- nent of resolution along drift direction thanks to say in the sponse in the carriers for low rate applications

$$
\sigma = \sqrt{\frac{2kTL}{eE}} = 0.7 \, \text{mm} \left(\frac{T}{300 \, \text{K}}\right)^{1/2} \left(\frac{580 \, \text{V/cm}}{E}\right)^{1/2} \left(\frac{L}{50 \, \text{cm}}\right)^{1/2}
$$

J. Martoff et al., NIM A 440 355

T. Ohnuki et al., NIM A 463

The classical "thermal limit" formula you have always seen……

 $\sigma_{tot}^2 = 2Dt$

 $D = \frac{2}{3} \frac{\varepsilon}{m} \tau.$

Diffusion coefficient as from Eq. 2.61 of the Rolandi - Blum - Riegler book

ε energy of the drifting particle

m mass of the drifting particle

 average time between collisions

Diffusion coefficient as from Eq. 2.61 of the Rolandi - Blum - Riegler book

$$
\sigma_{tot}^2 = 2Dt = \frac{2DL}{\mu E}
$$

$$
D=\frac{2}{3}\frac{\varepsilon}{m}\tau.
$$

ε energy of the drifting particle

m mass of the drifting particle

 average time between collisions

By rewriting this in terms of the electron mobility, Rolandi-Blum obtain the wellknow thermal limit for electrons

$$
\sigma_{tot}^2 = \frac{2kTL}{eE}
$$

Diffusion coefficient as from Eq. 2.61 of the Rolandi - Blum - Riegler book

$$
\sigma_{tot}^2 = 2Dt = \frac{2DL}{\mu E} \qquad \qquad D = \frac{2 \varepsilon}{3 \, m} \tau.
$$

ε energy of the drifting particle m mass of the drifting particle

 average time between collisions

By rewriting this in terms of the electron mobility, Rolandi-Blum obtain the wellknow thermal limit for electrons

$$
\sigma_{tot}^2 = \frac{2kTL}{eE}
$$

….but electrons and ions mobility differ due to the larger mass and the more efficient energy exchange during collisions of the second:

Diffusion coefficient as from Eq. 2.61 of the Rolandi - Blum - Riegler book

$$
\sigma_{tot}^2 = 2Dt = \frac{2DL}{\mu E} \qquad \qquad D = \frac{2}{3} \frac{d}{dt}
$$

 $\frac{\varepsilon}{\tau}$. n

ε energy of the drifting particle m mass of the drifting particle

 average time between collisions

By rewriting this in terms of the electron mobility, Rolandi-Blum obtain the wellknow thermal limit for electrons

$$
\sigma_{tot}^2 = \frac{2kTL}{eE}
$$
 IONS THERMAL LIMIT IS
DIFFERENT FROM
ELECTRONS THERMAL LIMIT!

….but electrons and ions mobility differ due to the larger mass and the more efficient energy exchange during collisions of the second:

Generalization of thermal limit S G S.

 $y = \frac{m_p}{m}$ **mass of the drifting particle mass of the gas molecule** m_t

 $y\rightarrow 0$ **for electrons**

Generalized drift velocity Generalized mobility

$$
u=\frac{eE}{m_p}\tau(1+\frac{m_p}{m_t})=\frac{eE}{m_p}\tau(1+y)
$$

$$
\mu_p = \frac{e}{m_p}\tau(1+y)
$$

Generalization of thermal limit $G \mid S$

 $y = \frac{m_p}{a}$ **mass of the drifting particle mass of the gas molecule** m_t $y\rightarrow 0$ **for electrons**

Generalized drift velocity Generalized mobility

$u=\frac{eE}{m_p}\tau(1+\frac{m_p}{m_t})=\frac{eE}{m_p}\tau(1+y).$

$$
\mu_p = \frac{e}{m_p}\tau(1+y)
$$

Generalized diffusion for monoatomic gases

$$
\sigma_{tot}^2 = \frac{2kTL}{eE} \frac{1}{1+y}
$$

Generalization of thermal limit ${\mathsf S}$ G

 $y = \frac{m_p}{a}$ **mass of the drifting particle mass of the gas molecule** m_t $y\rightarrow 0$ **for electrons**

Generalized drift velocity Generalized mobility

$$
u=\frac{eE}{m_p}\tau(1+\frac{m_p}{m_t})=\frac{eE}{m_p}\tau(1+y)
$$

$$
\mu_p = \frac{e}{m_p}\tau(1+y)
$$

Generalized diffusion for monoatomic gases

$$
\sigma_{tot}^2 = \frac{2kTL}{eE} \frac{1}{1+y}
$$

Generalized diffusion for gas mixtures Fractional momentum loss between the drifting particle *p* **and the gas species** *t* $\sigma_{tot}^2 = \frac{2kTL}{eE} \frac{\sum_t^{gas} \kappa_t \frac{\rho_t}{A_t} k_t (R_t+R_p)^2}{\sum_t^{gas} \frac{\rho_t}{A_t} k_t (R_t+R_p)^2}$ $\kappa_t = \frac{1}{1 + y_t} = \frac{1}{1 + \frac{m_p}{...}}$

with R_t and R_p being the radius of the gas specie t and the travelling particle p respectively, ρ_t is the relative density and A_t the molar mass of the specie t, and k_t its percentage in the gas mixture.

If a set and electronic thermal limits force

NID thermal limit differs from electron thermal limit and depends on the gas mixture

$$
\sigma_{tot}^2 = \sigma_T^2 L = \begin{cases} \frac{2kTL}{eE} & \text{for electrons} \\ \frac{2kTL}{eE} \frac{1}{2} & \text{for ions in mono} - \text{species} \\ \frac{2kTL}{eE} * 0.25244 & \text{For the gas mixture used in this study} \end{cases}
$$

the larger the ratio between the drifting ion and the gas mixture molecules, the smaller the thermal limit

….not all NID are the same ;)

S G **Negative ion drift: history and status**

Charge Readout | Constanting Constanting

- Low pressure **Low pressure**
- \blacklozenge Concept demonstratred in 2000 at 40 Torr CS₂ with MWPC [1]
- Pioneered in a actual experiment by DRIFT with CS₂:CF₄:O₂ at 40 Torr with MWPC [2]
- $\frac{3}{5}$ 20-40 Torr pure SF₆ in 2017 with THGEM [3]
- 20 Torr pure SF_6 with THGEM-multiwire $[4]$ and muPIC in 2020 [5] *See also S. Hishino talk @ 12.30*

- Demonstrated in 2010's in $He:CS_2[6]$ and CO2:Ne:CH3NO2[7] with GEMs and MWPC
- $\frac{1}{2}$ In 2017 at 610 Torr of He:CF₄:SF₆ with GEMs and TimePix2 [8]
- \blacklozenge In 2021 in Ar:iC4H₁₀:CS₂ with GridPix (Ingrid + Timepix3) [9] *See also J. Kaminsky talk on Tue*
- [1] C. J. Martoff et al. NIM A 440 335
- [2] G. J. Alner et al., NIM A 535
- [3] N. S. Phan et al, *JINST* 12 (2017) 02, 02

[4] A. C. Ezeribe NIM A 987 [5] T. Ikeda et al, *JINST* 15 07, P07015 [6] C. J. Martoff et al, NIM A 555

 $\frac{3}{5}$ 50-150 Torr CF₄:CS₂ with glass GEM and CMOS [D. Loomba, talk at RD51 June 2022 meeting]

THIS TALK

[7] C. J. Martoff et al, NIM A 598 [8] E. Baracchini et al, *JINST* 13 04, P04022 [9]C. Ligtenberg et al, NIM A 1014 165706

*Detector operated at LNGS (1100 m): atm pressure is 900 mbar

The MANGO detector

 \overline{S}

G

erc

S **Eyes (and waveforms) can't lie** G S

GEM preamp output O(us) rise for ED O(ms) rise for NID

0.90 atm (LNGS atmospheric pressure)

*First time NID are observed with PMTs! S G **PMT waveforms: how peculiar!** S

*First time NID are observed with PMTs! S G **PMT waveforms: how peculiar!** S

*First time NID are observed with PMTs! S G **PMT waveforms: how peculiar!** S

*First time NID are observed with PMTs!S G **PMT waveforms: how peculiar!**

Given the PMT bandwidth and the "slow" arrival of charge carriers, individual clusters are visible in the PMT signal --> WF analysis requires proper rebinning (not trivial)

*First time NID are observed with PMTs! S G **PMT waveforms: how peculiar!**

Given the PMT bandwidth and the "slow" arrival of charge carriers, individual clusters are visible in the PMT signal --> WF analysis requires proper rebinning (not trivial)

S G **NID drift velocity and mobility from WF analysis** erc

Given the alpha dZ spread estimated from ED (7 mm), estimate NID drift velocity:

From GEM preamp output rise time

From PMT waveforms time window extension, after proper WF rebinning

Black points from published data with charge readout and same mixture at 610 Torr [8]

sCMOS images analysis

- Alphas selection:
	- tracks reconstructed with iterative DBSCAN algorithm [10]
	- track length > 1.47 cm
	- track slimness < 0.3
- Sum of pixel content is light integral

[10] E. Baracchini et al, JINST 15 (2020) 12 T12003

Assuming SF₆ does not absorb light and **that light production mechanism stays the same with NID, extrapolating from previous CYGNO measurement ED & NID gain is** ∼**1-3 104**

(rough evaluation)

Negative ion drift with optical readout at atmospheric pressure - MPGD 2022 - Elisabetta Baracchini

15

A MANGO "in the keg" S G

Longer drift distance is necessary to measure diffusion: MANGO was installed in a vacuum vessel that could host a longer field cage

Because of geometry constraints, the camera is now at 26.6 cm distance (w.r.t. 20.5 cm of the previous setup): the light yield reaching the camera sensor is reduced of 2/3 with respect to previous configuration

For this reason and in order to be able to measure the diffusion at ∽**15 cm drift length and low** ∽**150 V/cm drift fields, we reduced the pressure to 650 mbar in the diffusion measurements**

S G **sCMOS images analysis for diffusion measurement**

- Track selection
	- tracks reconstructed with iterative DBSCAN algorithm [10]
	- track length > 1.47 cm
	- \bullet track slimness < 0.3
	- $#$ of peaks in the transverse profile $== 1$ (select single tracks)
	- Chi2/nDOF of transverse fit profile < 5 (remove additional multiple tracks)

Sigma of track profile and track integral fitted with Gaussian to estimate diffusion and light yield

ED & NID diffusion

He:CF₄ 60:40 (ED) He:CF₄:SF₆ 59:39.4:1.6 (NID) Transverse Profile Sigma Transverse Profile Sigma Sigma [um] Sigma [um] $+$ 150 V/cm 1000 1000 -200 V/cm -250 V/cm $-$ 300 V/cm 800 800 350 V/cm -400 V/cm 600 V/cm 600 600 400 400 200 200 $0¹$ $\mathbf{0}$ 12
Drift distance [cm] 6 8 10 12
Drift distance [cm] $\overline{2}$ $\boldsymbol{4}$ 2 4 6 8 10

$\sigma_{meas} = \sqrt{\sigma_0^2 + \sigma_T^2 L}$

S G **Diffusion constant & coefficient vs drift field** S

Garfield simulation of He:CF₄ 60:40 @ 650 mbar

$$
\sigma_{meas}=\sqrt{\sigma_0^2+\sigma_T^2L}
$$

Electron thermal limit
$$
\sigma_T^2 L = \frac{2kTL}{eE}
$$

\nNID mixture thermal limit $\sigma_T^2 L = \frac{2kTL}{eE} * 0.25244$

Conclusions & outlook

We revised out diffusion expressions and demonstrated electron thermal limit IS NOT NID thermal limit

NID thermal limit depends on the ratio of the mass of the drifting ion w.r.t. the gas mixture masses

We obtained Negative Ion Drift operation at LNGS atmospheric pressure with optical readout with both PMT and sCMOS

Drift velocity and mobility consistent with previous measurement with charge readout

First time NID are observed with a PMT!

Possibility of cluster counting and improved energy resolution and PID?

O(104) charge gain achieved

We measured ED and NID diffusion at 650 mbar

ED consistent with Garfield simulation and significantly above electron thermal limit

Huge reduction (factor 3) of NID mixture diffusion compared to ED

NID diffusion consistent with expected ionic thermal limit for the mixture under study

Since NID diffusion is thermal, expected to be the same at full atmospheric pressure

Only the first step towards a systematic investigation of He:CF4:SF6 NID mixture potentialities at atmospheric pressure (with either optical or charge readout)

Backup slides

Light Integral & gas gain

S

G

- **Light yield in MANGO is 104 for GEMs at 1200 V for 55Fe, corresponding to a 3 x 105 charge gain**
- **Light yield at 1000 V on the GEMs is reduced of a factor 10 w.r.t. 1200 V**
- **Hence, charge gain for 1000 V on GEMs is about 104**

Further crosschecks

<u>SILight integral vs pressure vs VGEM</u>

900 mbar 650 mbar

