



# Development of negative-ion gaseous TPC using micro pattern readout for direction-sensitive dark matter search

# Satoshi Higashino (Kobe University)

Kentaro Miuchi, Ayaka Nakayama, Mizuno Ofuji (Kobe University) Tomonori Ikeda (Kyoto University)

#### 15 / 12 / 2022

MPGD2022 @WIS, Rehovot, Israel 11-16, Dec. 2022

1

# Introduction

2

UTT FF

FTET

at the figure of the court Success

strand in Iscall.

ishi MANÉ SEKUTA D

Thank you for the good tour yesterday!

#### Direction-sensitive DM searches

- Detect scattering angle of nuclear recoils (NR) from the "Cygnus direction"
  - leads a strong signature of WIMP
  - ⇒ allows to explore beyond the neutrino-floor





WIMP wind from Cygnus!















#### paper in preparation

4



#### NEWAGE: 3D track detection with gaseous TPC



- TPC is filled with CF<sub>4</sub> gas (76 torr)
- Recoil angles can be measured by reconstructed tracks

→ 2D position + drift time
→WIMP search with 3D track



5 µ-PIC: 2D strip readout + amplification

- µ-PIC readouts 2D position
  - →400 um pitch 2D strip
  - also has capability of gas amplification
- GEM allows to cause further amplification

#### NEWAGE: 3D track detection with gaseous TPC



- µ-PIC readouts 2D position
  - →400 um pitch 2D strip

also has capability of gas amplification

• GEM allows to cause further amplification



5 μ-PIC: 2D strip readout + amplification

# TPC using negative-ion gas: SF<sub>6</sub>

Molecules capture ionized electrons and form 2 types of negative-ions



# Benefit of negative-ion gas

- Reduce alpha ray backgrounds produced in material surface
  - detector and drift cathode
- lower diffusion improves precision of track reconstruction
  - allows to reconstruct short track
    - more sensitive for low mass dark matter search



chamber





The 7<sup>th</sup> International Conference on Micro Pattern Gaseous Detectors 2022

Weizmann Institute of Science, Rehovot, Israel

## Today's topics

December

11-16, 2022

- Test of prototype negative-ion TPC w/  $\mu\text{-PIC}$ 

- Development of fine granularity pixel readout MPGD for negative-ion gas



The 7<sup>th</sup> International Conference on Micro Pattern Gaseous Detectors 2022

Weizmann Institute of Science, Rehovot, Israel

#### Today's topics

December

11-16, 2022

#### - Test of prototype negative-ion TPC w/ $\mu$ -PIC

- Development of fine granularity pixel readout MPGD for negative-ion gas

# Prototype detector

- 400  $\mu$ m pitch  $\mu$ -PIC readout + 2 GEMs amplification
- Dedicated electronics (LTARS2018 ASIC: T. Kishishita, et. al. 2020 JINST 15 T09009)



# Demonstration using Alpha rays

- (Somehow) collimated <sup>241</sup>Am alpha source are placed
  - come across to the drift region
- Both SF<sub>5</sub><sup>-</sup> and SF<sub>6</sub><sup>-</sup> are clearly seen





# NR detection in neutron run (<sup>252</sup>Cf)

• Detect NR: signals inside the fiducial region

- no signals at the corner of strips
- Small SF<sub>5</sub>- signals are also clearly appear



#### Absolute position reconstruction efficiency

- Absolute 3D position reconstruction successfully performed
- Good 2-peak detection efficiency
  - defined as "#events with SF5- peak / #NR evens"
- Ready to use for dark matter searches (directionality study is still ongoing)





The 7<sup>th</sup> International Conference on Micro Pattern Gaseous Detectors 2022

Weizmann Institute of Science, Rehovot, Israel

#### Today's topics

December

11-16, 2022

#### - Test of prototype negative-ion TPC w/ $\mu\text{-PIC}$

- Development of fine granularity pixel readout MPGD for negative-ion gas

# 100 µm pitch pixel readout

- Enable to achieve lower energy threshold
  - → 100 keV<sub>r</sub> (current: 400  $\mu$ m pitch) → 10 keV<sub>r</sub> (100  $\mu$ m pitch + SF<sub>6</sub> 20 torr)
  - ➡ allows to explore lower DM mass region
- Pixel readout can reduce ghost tracks



## Pixel readout system for gaseous TPC

- Some excellent systems are already exist
  - but we need to detect 2-peak events (=multi hit readout for each trigger)

| e.g. ) ASIC                             | TimePix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FE-I4                                                       | LArPix          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QPIX (by JP group)                                |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Application                             | Gas TPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Silicon (ATLAS)<br>Gas TPC (SuperKEKB)                      | LAr TPC         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gas TPC                                           |
| Digitization                            | Time over Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time over Threshold                                         | Charge integral | ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Charge integral ADC<br>Time over Threshold        |
| Pixel size                              | $55 \times 55 \ \mu m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $50 \times 250 \ \mu m^2$                                   | 4 × 4 mm² (P    | ad)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 × 200 µm² (ASIC)<br>400 × 400 µm² (Pad)       |
| 7 + + + + + + + + + + + + + + + + + + + | (d) $(d)$ | - TPC @KEK (w/ FI-I4)<br>Excellent track<br>reconstruction! | however         | 0.5<br>0.4<br>() 0.3<br>() 0.3<br>( | SF5<br>0.4 0.6 0.8 1 1.2 1.4<br>Time (ms)         |
| 2                                       | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A, Volume 1026, 1 March 2022, 166066<br>16                  |                 | we ne<br>dedic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eed to produce<br>ated ASIC for SF <sub>6</sub> ! |

## Pixel readout system for gaseous TPC

- Some excellent systems are already exist
  - but we need to detect 2-peak events (=multi hit readout for each trigger)

| e.g. ) ASIC                             | TimePix                               | FE-I4                                                                                                                               | LArPix                        | QPIX (by JP group)                                                                                       |
|-----------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------|
| Application                             | <b>GridPix!!!</b>                     | Silicon (ATLAS)<br>Gas TPC (SuperKEKB)                                                                                              | LAr TPC                       | Gas TPC                                                                                                  |
| Digitization                            | Time over Threshold                   | Time over Threshold                                                                                                                 | Charge integral               | ADC Charge integral ADC<br>Time over Threshold                                                           |
| Pixel size                              | $55 \times 55 \ \mu m^2$              | $50 \times 250 \ \mu m^2$                                                                                                           | $4 \times 4 \text{ mm}^2$ (Pa | ad) $\begin{array}{c} 200 \times 200 \ \mu m^2 \ (ASIC) \\ 400 \times 400 \ \mu m^2 \ (Pad) \end{array}$ |
| 7 + + + + + + + + + + + + + + + + + + + | C C C C C C C C C C C C C C C C C C C | TPC @KEK (w/ FI-I4)<br>Excellent track<br>reconstruction!<br>ledges, S.Vahsen, et. al.<br>I A, Volume 1026, 1 March 2022, 166<br>16 | however                       | 0.5<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                              |

# To achieve 100 µm pixel readout, ...

- Need bump bonding to connect to electrode pads
- Usually ASIC not only has pixelized region (e.g. I/O, digitization, ...)
  - ⇒ need to prepare <100 µm pitch pixel region on ASIC





# QPIX NEO v1 prototype

Thanks to the electronics group in KEK



First production finished on Oct. 2022!







version mismatched

Thanks to the electronics group in KEK



# ASIC Specification

• 2 type output format prepared (waveform & ToT) just for tests



19

# ASIC Specification

• 2 type output format prepared (waveform & ToT) just for tests



# c.f. Eqivalent circuit for each channel



# c.f. Eqivalent circuit for each channel



# PCB development

- First prototype electronics production ongoing
  - w/o chamber, electronics only
  - → QPIX NEO is packaged
- ASIC board + ZYNQ evaluation board
  - → ASIC evaluation will be started from Jan. 2023. Stay tuned!



Packaged QPIX NEO





Xilinx ZC702 (ZYNQ board)

# Conclusion

- Negative-ion TPC + MPGD has capability to improve sensitivity for direction-sensitive dark matter search
- $\bullet$  First absolute 3D position reconstruction successfully worked using  $\mu\text{-PIC}$
- Development of high granularity readout electronics is started







# Drift diffusion

• In case of electron drifts, difficult to reconstruct <1 mm short tracks due to drift diffusion

- Limited by readout pitch (400  $\mu$ m for our  $\mu$ -PIC)
- Negative ion drifts slowly and with small diffusion, which enable to explore low mass DM search
- Need to readout with high granularity



### Event selection

- Events which have no signals at the corners are selected
  - ➡ for alpha ray BG rejection
- Length Energy cut is applied
  - ⇒ for ambient gamma BG rejection



# Future plans

- For directional dark matter searches, we need to ...
  - measure angular resolution
  - $\rightarrow$  increase the number of readout channels  $\rightarrow$  electronics updating
  - → increase detection volume → Large scale (~1 m<sup>3</sup>) commissioning





C/N-1.0 (~1 m<sup>3</sup>)

"CYGNUS" community

# Diffusion of electron drifts

- Electron drift: calculated by MAGBOLZ
- Negative ion drift: calculated using thermal diffusion model



#### M. Miyahara (KEK)





28

#### M. Miyahara (KEK)





28

M. Miyahara (KEK)



