

Neutron and beta imaging with Micromegas detectors with optical readout

MPGD 2022 – 15/12/2022

A. Cools, E. Ferrer-Ribas, T. Papaevangelou, E. C. Pollacco, T. Benoit, D. Desforge (Université Paris-Saclay, CEA, IRFU)
F.M. Brunbauer, L. Ropelewski, E. Oliveri (CERN)
F. Beau, L. Devel, C. Malgorn (Université Paris-Saclay, CEA, Institut Joliot)
F.J. Iguaz-Gutierrez (Soleil Synchrotron)
A. Sari (Université Paris-Saclay, CEA, List)

The 7th International Conference on **Micro Pattern Gaseous Detectors 2022**

Weizmann Institute of Science, Rehovot, Israel

December 11-16, 2022

LIGHT PRODUCTION MECHANISMS

LIGHT DETECTION DEVICES

DETECTOR CHARACTERIZATION WITH X-RAY SOURCES APPLICATIONS

B-IMAGING

PRELIMINARY RESULTS WITH TRITIUM SAMPLES

NEUTRON RADIOGRAPHY

PRELIMINARY RESULTS WITH A NEUTRON SOURCE

CONCLUSION AND PERSPECTIVES

CONTEXT

Optical readout

Mesh

Advantages:

- > 2D pixelized readout of high granula
- Megapixel resolution from commerce
- Integrated imaging approach
- **Applications:**

CCD camera F. Brunbauer

- Real-time neutron imager
- $\succ \beta$ imager for sub-becquerel activity r

Nuclear Inst. and Methods in Physics Research, A 955 (2020) 163320

Contents lists available at ScienceDires Nuclear Inst. and Methods in Physics Research, A journal homepage: www.elsevier.com/locate/nima

Check for updates

AMETHODI IN PHYSIOS RESEARCH

F.M. Brunbauer^a, D. Desforge^b, E. Ferrer-Ribas^b, F.J. Iguaz^b, B. Mehl^a, R. De Oliveira^a E. Oliveri^a, T. Papaevangelou^b, O. Pizzirusso^a, E.C. Pollacco^{b,*}, F. Resnati^a, L. Ropelewski^a, L. Segui^b, M. van Stenis^a ^a European Organization for Nuclear Research (CERN), CH-1211 Geneve 23, Switzerland ^bIRRU, CEA, Universit
^e Paris-Saclay, F-91191 Gif-sur-Yvette, France

Radiation imaging with glass Micromegas

ARTICLE INFO ABSTRACT

Optically recording scintillation light emitted by MicroPattern Gaseous Detectors (MPGDs) with imaging
sensors is a versatile and performant readout modality taking advantage of modern high granularity imaging
sensors. To allow scintillation light readout of a detector based on MicroMesh Gaseous Structure (Micromegas)
technology, we have integrated a Micromegas on a glass substrate with a transparent anode. In addition to
optical detection of scintillation light emitted during electron avalanche multiplication between the micromesh
and the anode, this setup also achieves a good energy resolution. A glass Micromegas detector was operated
in an Ar/CF4 gas mixture and showed a response comparable to conventional Micromegas detectors. The
spectrum of the emitted scintillation light was recorded and shown to be equivalent to the one obtained with
other gaseous detectors in the same gas mixture. Optically read out images were recorded with CCD cameras
and integrated X-ray radiographic imaging with good spatial resolution was demonstrated. A spatial resolution
of 440 µm (10% MTF) was found. Single X-ray photon detection with a high-sensitivity camera was achieved,
which potentially permits energy-resolved X-ray fluorescence imaging.

1. Introduction

Keywords: Radiation imagin;

Optical readout MPGD

Glass Micromegas Scintillation

Micromegas

Optical readout of MicroPattern Gaseous Detectors (MPGDs) takes advantage of combining the high gain factors achievable by MPGD technologies with the high granularity pixel readout permitted by modern imaging sensors. This allows for the realisation of radiation detectors with spatial resolution and sensitivity to a wide range of radiation ranging from Minimum Ionising Particles (MIPs) to low-energy X-rays, as well as highly ionising radiation such as alpha particles. Detector concepts based on optically read out MPGD-based detectors have been previously developed for applications such as radiation imaging [1,2], 3D track reconstruction in optically read out Time Projection Chambers (TPCs) [3,4] or dose imaging in hadron therapy [5,6]. Previous MPGD-based detector concepts employing optical readout with imaging sensors were predominantly based on Gaseous Electron Multipliers (GEMs), a variety of MPGDs consisting of perforated multilayer foils. This geometry makes GEMs well-suited for optical readout as scintillation light emitted during electron avalanche multiplication can be easily recorded by a camera placed behind the detector. In contrast, most other MPGD technologies are integrated on substrates such as Printed Circuit Boards (PCBs) which are opaque and thus inhibit scintillation light recording. This is also true for MicroMesh Gaseous Structures (Micromegas), which employ a micro-mesh supported by insulating pillars to create a uniform amplification region with an electric field strength sufficient for electron avalanche amplification between the micro-mesh and an anode [7]. However, Micromegas are typically integrated on PCBs, which has previously inhibited the optical readout of such detectors

We have developed a Micromegas detector on a glass substrate with a transparent anode made of Indium Tin Oxide (ITO) to enable the optical readout of Micromegas-based detectors. Thus it is possible to take advantage of the superior energy resolution reached by this MPGD technology as well as profit from the high spatial resolution and intuitive 2D imaging capabilities associated with optical readout with state-of-the-art imaging sensors. This enables the readout of secondary scintillation light emitted dur

ing electron avalanche multiplication in the amplification gap between the micro-mesh and the anode. As with the optical readout of GEMbased detectors, the glass Micromegas were operated in an Ar+CF4 gas mixture. Gas mixtures containing CF4 feature wide scintillation light emission bands in the ultraviolet (UV) and visible (VIS) wavelength ranges [8], which are compatible with the wavelength-dependent quantum efficiency (OE) of common CCD and CMOS imaging sensors Optical readout of GEM-based detectors operated in Ar+CF4 gas mixtures has been reported and used for X-ray radiography [1,2] as well as 3D track reconstruction [3,4].

* Corresponding author. E-mail address: emmanuel.pollacco@cea.fr (E.C. Pollacco)

https://doi.org/10.1016/j.nima.2019.163320 Received 1 October 2019; Received in revised form 17 December 2019; Accepted 18 December 2019 Available online 19 December 2019 0168-9002/© 2019 Published by Elsevier B.V.

Gas mixture : Ar/CF₄

Micro Pattern Gaseous

Detectors 2022

LIGHT DETECTION DEVICES

Hamamatsu CMOS camera

Photon number resolving

ORCA-Quest

Readout noise

Standard scan	0.43 electrons rms
Ultra quiet scan	0.27 electrons rms

Pixels

Number	Size
4096 x 2304	4.6 µm x 4.6 µm

Dark current

Cooling	Sensor temperature	Dark current
Air	- 20 °C	0.016 e ⁻ /pixels/s

Minimum exposure time

Mode	Rate
Standard	1 μs/frame
Ultra quiet	100 ms/frame

Photoelectron (electrons)

Detectors 2022

LIGHT DETECTION

Detectors 2022

DETECTOR CHARACTERIZATION WITH X-RAY SOURCES

Micro Pattern Gaseous

Detectors 2022

DETECTOR CHARACTERIZATION WITH X-RAYS

- Charge readout test in Argon+5%lso:
 gain above 10⁴ and FWHM reaches 16%
- > Coated glass with 150 nm of ITO (Indium Thin Oxide)
- Pillars with hexagonal pattern and large pitch (6 mm)

S. Aune, T. Benoit, M. Kebbiri

Glass Micromegas

DETECTOR CHARACTERIZATION WITH X-RAYS (CERN GDD)

9

<u>X-ray radiography (20 kV) – Ar/CF₄(20%)</u>

High gain: 1 min exposure time gives images with good contrast

^{The 7th International Conference on Micro Pattern Gaseous Detectors 2022} 60 sec exposure time bat radiography with simple background suppression and beam profile correction.

60 sec full detector image with simple background suppression.

SOLEIL BEAM TEST (16/11-18/11)

Synchrotron Soleil (4 keV – 15 keV)

Goals

Aicro Pattern Gaseous Detectors 2022

- Determination of Point Spread Function
- Spatial resolution dependence on drift gap, drift field and beam energy

Test of OPTIMED-BETA detector at hard X branch of METROLOGIE beamline

Detector homogeneity

1x1mm beam, Primary Scintillation (Va=0 V, Vd=0 V)

1x1mm beam, Amplification (Va=400 V, Vd=210 V)

0.035x0.035mm beam, Amplification (Va=400 V, Vd=210 V)

10

80

60

Intensity 0

20

0

Micro Pattern Gaseous Detectors 2022

$35 \times 35 \mu m^2$ beam, 6keV, Drift gap = 3 mm

PRELIMINARY

Va=450 V, Vd=100 V

Reduced drift field (V/cm/bar)

B-IMAGING

PRELIMINARY RESULTS WITH TRITIUM SAMPLES

NEUTRON RADIOGRAPHY

PRELIMINARY RESULTS WITH A NEUTRON SOURCE

B-IMAGING

Tumor heterogeneity: different cell types inside a tumor

- Heterogeneity effect on drug targeting?
- > Will help the developing of more efficient drugs
- Requires better detection sensibilities

Molecule labelling and tracking with tritium

Tumoural cells collected from an animal – Tritium tracking

Cellular culture

Cell deposit by microfluidics techniques

Tritium activity counting with gaseous detector

Pharmaceutical needs at the cell level for drug development:

- Assess the drug distribution among cells
- > Evaluate the impact of the cell heterogeneity on drug biodistribution
- > At the cell level: Quantification of ³H concentration in **single cell** samples

PRELIMINARY RESULTS WITH TRITIUM SAMPLES

 \succ Activity measurement limits and dynamic range \rightarrow Activities: 0.3 Bq and 60 Bq

> Spatial resolution \rightarrow gap between drops: 2 cm - 1 cm - 5 mm

PRELIMINARY RESULTS WITH TRITIUM SAMPLES

Integration method :

- Infu

- ➢ 60 Bq drops positions are well assessed
- > 0.3 Bq drops hardly visible

Ar/CF₄(20%)

180 frames of 10 sec (30 min) added with simple background suppression 20% of CF4

Micro Pattern Gaseous Detectors 2022

PRELIMINARY RESULTS WITH TRITIUM SAMPLES Clustering method :

20000 frames of 100 msec (33 min), individual pixel background thresholding, 20% of CF4

- > Both 60 Bq and 0.3 Bq drops positions are well assessed
- Better signal-to-noise ratio and counting events capability

licro Pattern Gaseous etectors 2022

NEUTRON RADIOGRAPHY

Micromegas-based neutron imager

- ¹⁰B₄C neutron-to-charge converter
 - > Thermal neutrons absorbed by 2 μ m thin ¹⁰B₄C layer
 - Conversion efficiency: 5%
 - \succ (α or Li) fragments causes strong ionisation compared to electrons
 - > Drawback: fragments long range in the gas (5 mm)
 - Acquisition modes:
 - > **Event-by-event**: track reconstruction:

potentially higher resolution (100 μm), better γ-to-n suppression

- Integrated: real-time radiography:
- γ-to-n suppression less efficient

Boron converter principle

PRELIMINARY RESULTS WITH A NEUTRON SOURCE

Experimental set-up

OMNIS set-up schema

PRELIMINARY RESULTS WITH A NEUTRON SOURCE (CERN GDD)

100

101

10²

Reduced drift field (V/cm/bar)

10³

104

CONCLUSION

What we have done

- Several types of Micromegas on glass were built and tested
- Setups of optical readout detectors for neutron and beta detection
- > Detector characterization at X-ray facilities, with beta samples and neutron sources
- Image processing in progress

Outlook

- Beam test at Soleil accelerator: spatial resolution measurement and determination of point spread function
- Investigate image treatment methods
- \succ β -imaging: tests on isolated single tumor cells

> Neutron radiography: Irradiation at neutron facilities

BACK UP

PRELIMINARY RESULTS WITH TRITIUM SAMPLES <u>Clustering method</u>:

Charge readout coupling

Optical readout

	Mean activity (Bq)	Mean STD (Bq)
High activity	8,4	0,74
Low activity	0,087	0,022

Scintillation : excited atoms or molecules emit photons during de-excitation.

PRELIMINARY RESULTS WITH TRITIUM SAMPLES

β particle range in Ar-Isobutane gas mixture

DETECTOR CHARACTERIZATION WITH X-RAYS

X-ray radiography

> MTF measurement

60 sec exposure time lead target radiography with simple background suppression.

SOLEIL BEAM TEST (16/11-18/11)

The 7th International Conference on Micro Pattern Gaseous Detectors 2022

Cea

[[rit Statistics]]
fitting method = leastsq
function evals = 1751
data points = 27
variables = 6
chi-square = 39420.8208
reduced chi-square = 1877.18194
Akaike info crit $= 208.727738$
Bavesian info crit = 216.502760
[[Variab]ec]]
(10110000)
$g_1 = g_1 c_1 c_2 c_2 c_3 c_3 c_3 c_4 c_5 c_5 c_5 c_5 c_5 c_6 c_1 c_1 c_2 c_3 c_5 c_5 c_5 c_5 c_5 c_5 c_5 c_5 c_5 c_5$
y_1 (enter: 40.022013) z_1 - 0.10000134 (0.40%) (int = 41)
$g_{1} = 1 g_{1} g_{1} g_{1} g_{1} g_{2} g_{1} g_{1} g_{2} g_{1} g_{1} g_{1} g_{2} g_{1} $
g1_twhm: 19.6323238 +/-0.91322863 (4.65%) == 2.3548200*g1_s1gma
g1_height: 1160.54291 +/- 83.6092695 (/.20%) == '0.3989423*g1_amplitude/max(le-15, g1_sigma)'
g2_amplitude: 14893.5940 +/- 985.544332 (6.62%) (init = 3131.459)
g2_center: 40.8678940 +/- 0.04921094 (0.12%) (init = 41)
g2_sigma: 2.94535109 +/- 0.09062681 (3.08%) (init = 2)
g2_fwhm: 6.93577165 +/- 0.21340982 (3.08%) == '2.3548200*g2_sigma'
g2 ⁻ height: 2017.30947 +/- 79.9626750 (3.96%) == '0.3989423*g2 ⁻ amplitude/max(le-15, g2 sigma)'
[[Correlations]] (unreported correlations are < 0.100)
$C(g_2 \text{ amplitude, } g_2 \text{ sigma}) = 0.922$
C(ql sigma, q2 amplitude) = 0.894
$(a]$ amplitude. a^2 amplitude) = -0.888
(a) amplitude a signal = -0.862
$C(g_1 \text{ sigma, } g_2 \text{ sigma}) = 0.755$
$\left(g_{1}^{2}\right)$ simplify the gradient g_{1}^{2} simplify g_{2}^{2} simplify g_{1}^{2} simplify g_{2}^{2}
$C(g_1 \text{ contert}, g_2 \text{ contert}) = -0.030$
$C(g_{\perp})$ conter() g_{\perp} conter() -0.577
$C(g_1 \text{ amplitude}, g_1 \text{ center}) = 0.337$
C(g) center, g2 amptitude) = -0.319
$C(g_1 \text{ sigma}, g_2 \text{ center}) = -0.313$
C(g1 = -0.308) = -0.308
$C(g_2)$ amplitude, g_2 center) = -0.233
$C(g_1 \text{ center}, g_1 \text{ sigma}) = -0.195$
$C(g2_center, g2_sigma) = -0.186$
C(gl_amplitude, g2_center) = 0.131
[[Fit Statistics]]
fitting method = leastsq
function evals = 123
data points = 28
variables = 6
chi-square = 20811.7844
reduced chi-square = 945.990199
Akaike info crit = 197.109964
Bayesian info crit = 205.103191
[[Variables]]
gl amplitude: 12274.5142 +/- 694.175066 (5.66%) (init = 3063.108)
g1_center: 39.8013459 +/- 0.03745693 (0.09%) (init = 40)
g1_sigma: 2.82109227 +/- 0.07424611 (2.63%) (init = 2)
q1 fwhm: 6.64316450 +/- 0.17483622 (2.63%) == '2.3548200*q1 sigma'
g1 height: 1735,78971 +/- 58,4831826 (3,37%) == '0,3989423*g1 amplitude/max(le-15, g1 sigma)'
g2 amplitude: 26006.5767 +/- 575.709827 (2.21%) (init = 3063.108)
g2_center: 40.0064641 +/- 0.08773170 (0.22%) (init = 40)
q_2^2 sigma: 7.92542093 +/- 0.22378900 (2.82%) (init = 2)
a_2 fwhm: 18.6629397 +/- 0.52698281 (2.82%) == '2.3548200*a_2 sigma'
g2 height: 1309.09432 +/- 61.1708860 (4.67%) == '0.3989423*g2 amplitude/max(le-15, g2 sigma)'
[[Correlations]] (unreported correlations are < 0.100)
[[corrections]] (unreported corrections are < 0.100)

SOLEIL BEAM TEST (16/11-18/11)

Va=550 V, Vd=210 V

Cea

400 -		•		•		•		•		•		•		•		•		•		•		•					-	50000
	•		•		•		•		•		•		•		•		•		•		•		•					
600 -		•		•		•		•		•		•		•		•		•		•		•		•			-	40000
800 -	•		•.		•		•		•		•		•		•		•		•		•		•		I			
			•		•						•		•								•		•					
1000 -		•		•		•		•		•				•		•		•		•		•		•			ľ	30000
1200	•		•		•		•		•		•		•		•		•	•	•		•		•					
1200 -		•		•		•		•		•		•		•		•		•		•		•		•			ŀ	20000
1400 -			•		•		•		•		•		•		•		•		•		•		•	•				
			•		•								•				•		•		•		•		I			10000
1600 -		•		•		•		•		•		•		•		•		•		•		•		•				
1800 -	•		•		•		•		•		•		•		•		•		•		•		•					
10			400			600	D		8	00		1	1000			120	0		14	00		1	1600		0	575		

The 7th International Conference or Micro Pattern Gaseous Detectors 2022

Isfa

The 7th International Conference of Micro Pattern Gaseous Detectors 2022