Optimizing Structure and Operation of GEM Detectors for High Particle Rate at Jefferson Lab

Huong Nguyen On the Behalf of Detector Lab, Physics Department, UVA

MPGD 2022, Weizmann Institute of Science

The GEM Program at JLab

Versatile triple-GEM tracking systems at JLab

- ⇨ **PRad** for Proton Charge Radius measurement
	- One GEM layer: constructed from two large GEM modules
	- Active area of each module: 120×55 cm2
- ⇨ **SBS** (Super Bigbite Spectrometer) for Nucleon form factors
	- Front tracker: 6 GEM layers, active area of 150 \times 40 cm²
	- Back tracker: 11 layers, active area of 200 \times 60 cm²
- ⇨ **MOLLER** for Precision measurement of weak charge of the electron QeW
	- 4 GEM tracker layers: each has 7 trapezoidal shaped modules
	- Active area of each module \sim 2000 cm²
- ⇨ **SoLID** (Solenoid Intensity Device) for Precision Measurements in QCD & Electroweak sectors
	- \blacksquare 120 GEM modules expected, active area of each module ~3300 cm2

❖ **UVA role in GEM program at JLab**

- **PRad:** Both GEM modules were constructed by UVa
	- Highly stable performance in beam during the whole PRad experiment
	- PRad GEMs will be used in the searches for Dark sectors
- ⇨ **SBS:** Built 4 front-tracker layers & 11 back-tracker layers (48 modules)
	- SBS GEM modules are currently working very well in high intensity beam
- ⇨ **Moller:** Completed prototype-I, start production of 18 modules in 2023
- **SoLID:** Completed one prototype, finalize design

PRad

2

UVA Detector Lab

Simulation & Validation Design & Construction Characterize & Commision

Conductors of the Lab

Data & Physics Analysis

4

❖ **PRad GEMs setup at Jefferson Lab**

- \Rightarrow Two large area GEM modules (150 x 55 cm²) mounted with overlap region (4.4 x 150 cm²) to form an opening hole for beam
- ⇨ Used for position detection of the scattered electrons

Chambers setup in Hall B at JLab

❖ **Performance of PRad GEM detector in beam**

■ PRad GEM Efficiency in beam: > 95%

■ PRad GEM position resolution: 72 µm

X Resolution

- GEM detector performed highly stable in beam during the whole experiment
- PRad GEM detector improved the experiment resolution by a factor of 20

SBS 50cm x 60cm

▪ **4 modules (150 x 40 cm) for front tracker**

- \div Each module has 60 sectors
- ⇨ Segmentation and protective resistors on both sides of GEMs

SBS 150cm x 40cm

- **48 modules (50 x 60 cm) for rear tracker**
	- ⇨ Each GEM has 30 sectors, segmentation and protective resistors on top side
	- \approx Stack 4 modules to form a layer with active area of 200 x 60 cm²

Performance of UVA GEMs in SBS High Rate Environment

- ⇨ UVA GEMs have been in beam for GMn (Spring 2021) and GEn-II (Now) experiments
- ϕ Working very stable at high luminosity (\sim 10³⁸) and unprecedented integrated rates
- ⇨ Have sufficiently low noise levels; signals well above noise
- ⇨ Have very good resolution: close to what was achieved with cosmic's

▪ **Challenges for GEM tracking systems at JLab**

- \Rightarrow Hit rate exceeding 500 kHz/cm² over a large active area of GEM modules
- ⇨ High background from Intense low energy photon environment

Cosmic data of SBS GEMs

- \Rightarrow Stable with high efficiency
- \Rightarrow Sufficiently low noise levels
- ⇨ Good resolution

Efficiency drop in SBS high-rate experiments:

- ⇨ GEM efficiency during GMn experiment (Spring 2021) significantly drops as beam current increases
- ⇨ Future SBS experiments (GEn-rp, GEp-V) are predicted to have 10x the luminosity of GMn experiment and expected to face similar limitations on a larger scale

❖ **Possible causes:**

- ⇨ High voltage (HV) power supply using resistive dividers limits appropriate field strength in multiple regions in GEM modules
- \Rightarrow High rates increase the difficulty for tracking

Solving high-rate problem in SBS:

- ⇨ **1st** Optimize tracking algorithm for high rate
- ⇨ **2nd** Modify HV power supply to restore electric field in GEMs
- \Rightarrow **3rd** Optimize cathode structure to reduce background created in GEM modules⁶

Dropping of electric field in GEMs at high rate ↓ ● Possible solutions to restore

- ⇨ Currents in & out of GEM electrodes increase with rate
- \Rightarrow They alter the HV distribution at higher rates, weaken the E field in GEM holes
- ⇨ Voltage drop in protective resistors further weakens electric field in GEM holes
- ⇨ Reduced E field in GEM holes ⇒ reduced gain ⇒ reduced efficiency
- **electric field in GEMs**
	- ⇨ Partial solution: Lower resistance of HV divider to reduce ratio of GEM electrode current and main current in divider \Rightarrow reduce the problem with efficiency lost
	- \Rightarrow Better solution: use parallel power supply for each individual region in GEM module
	- ⇨ Cost-effective solution: Use active HV divider to adjust HV accordingly to beam current intensity

❖ **Generating high rate environment @ UVa**

- \Rightarrow A photon beam is sent from X-Ray source to GEMs:
	- 10x10 cm2 GEM modules placed 40 cm away from source
	- 50x60 cm2 GEM module placed 70 cm away from source
- \Rightarrow X-ray generator specifications
	- Photon energy range: up to 50 keV
	- **■** Photon flux at distance of 40cm: 56 MHz/cm² (50 keV /1 μ A)
- \Rightarrow Hit rates on GEMS
	- \blacksquare ~0.5 % of x-rays are converted into MIP equivalent
	- Charge deposition equivalent to MIP rate of 20 MHz/cm² can be reached
- ❖ **Evaluating the dependence of GEMs efficiency on HV**

distribution & hit rate

- \Rightarrow Investigate the dependence of HV distribution on hit rate
- ⇨ Measure readout (RO) current (collecting from RO connectors) vs. hit rate
- \Rightarrow Estimate the gain vs. hit rate through the change of RO current vs. hit rate

❖ **Voltage across triple GEM regions change as hit rate increases**

Figure: **Triple GEM regions**

- \Rightarrow Significant loss in voltage across GEM 3
- \Rightarrow Effect is less severe in GEM 2 and GEM 1
- \Rightarrow Voltage across drift, and the first transfer region goes up noticeably

Jefferson Lab **Solutions to Restore Efficiency of SBS GEMs in High Rate** IVERSITY
/IRGINIA

❖ **Modify Resistive Divider**

- \Rightarrow Reduce divider resistance by a factor of two \rightarrow reduce the ratio between currents on GEM electrodes and main current through divider
- ⇨ 10% increase in resistance across GEM3 to compensate for voltage drop on protective resistors

❖ **Parallel power supply for**

individual GEM regions

- \Rightarrow Limitation of the divider is lifted
- \Rightarrow Only the effect of protective resistors remains

- \Rightarrow RO current increases linearly with the rate as:
	- Parallel power supply is used for individual regions in GEMs
	- Bypass the protective resistors
- ⇨ Applying corrections on the parallel power supply to compensate for voltage drop on protective resistors
	- An iterative correction of 3 steps recovers > 90% of the efficiency loss

 0.2_m

 0.2

❖ **All solutions tested at UVA are now implemented at GEn Experiment in Jefferson Lab:**

Fig.1: Efficiency maps with: (a) low beam current on Carbon foil target

- (b) 30 μ A of beam current on ³He target
- *Fig.2:* Efficiency maps with 30μA of beam current on 3He target for GEM module using parallel power supply (a) without correction and (b) with correction
- \Rightarrow Parallel Power Supply with iterative correction is used for front tracker GEMs
- ⇨ Modified Resistive Divider is used for back tracker GEMs
- \Rightarrow SBS GEMs worked well in beam with:
	- Stable performance, high efficiency and good resolution
	- Meeting (or exceeding) design parameters

13

▪ **Interactions between photon background and Cathode layer**

resulting in secondary electrons

- ⇨ Low-energy photons: Photoelectric Effect, Compton Scattering
- ⇨ High-energy photons: Pair Production

▪ **Problems with secondary electrons created in drift cathode layer**

- \Rightarrow Drifting towards GEM foils, multiplying in GEM holes, then creating false signals
- ⇨ Lowers GEM efficiency
- \Rightarrow Causing problem with GEM tracking analysis
- **Optimizing configuration of GEM cathode foil to reduce photon background effects**
	- \Rightarrow Material of the conducting layer of cathode layer
	- \Rightarrow Structure of conducting layer (absence/presence of etched out holes)
	- ⇨ Orientation of cathode layer in GEM module

Copper

Optimizing Cathode Configuration for Moller GEMs

Geant4 Simulation

 \Rightarrow Send a simulated beam of a x-ray source into a simulated 10cm x 10cm GEM module

 \Rightarrow Investigate distribution of secondary electrons created in the drift volume for different configurations of the cathode foil

Experiment setup to verify simulation

- \Rightarrow Building 10cm x 10 cm triple GEM modules with cathode configurations have been simulated
- \Rightarrow Taking data with X-Ray source which have been simulated
- \Leftrightarrow Based on the distribution of number of hit collected by RO board vs. X-Ray current to verify simulation results

15

Investigating two structures of cathode foil in the GEM module:

- \Rightarrow Cathode foil has a perforated copper layer (similar hole pattern as GEM foils).
- \Rightarrow Cathode foil has a solid copper layer

▪ **Conclusion**

- ⇨ Number of higher-energy secondary electrons in the drift volume is slightly lower with perforated cathode foil.
- \Rightarrow Number of hits collected from RO board is slightly lower with perforated cathode foil
- \Rightarrow Having holes in copper layer also helps to reduce multiple scattering of real signal
- ⇨ Cathode foil in Moller prototype-I has solid copper conducting layer → will be changed to perforated copper conducting layer

Investigating two orientations of cathode foil in the GEM module:

- \approx Cathode foil made of two attached layers: Copper (5 μ m) and Kapton (50 μ m)
- ⇨ Conducting copper layer of cathode foil is **upstream of beam** (facing towards incident particles)
- ⇨ Conducting copper layer of cathode foil is **downstream of beam** (facing away from incident particles)

Conclusion

- \Rightarrow Photon absorption is identical regardless of orientation
- \Rightarrow Number of secondary electrons in the drift gas region is significantly lower with upstream orientation
- ⇨ Number of hits collected from RO board is lower with upstream orientation

17

❖ **Investigating two conducting materials of cathode foil in the GEM module:**

 \approx Cathode foil: $5.0 \mu m$ copper layer vs. 1.0 μm aluminum layer

▪ **Conclusion**

- \Rightarrow Photon absorption is significantly higher for copper layer
- ⇨ Photons passing through aluminum cathode foil **strikes on copper layer of 1st GEM foil** & creates secondary electrons which induce false signals
- \Rightarrow Number of hits collected from RO board is lower with copper cathode foil
- \Rightarrow Need to optimize the top layer of GEM1 to reduce effect of photon bkgs

▪ **Current Design of SBS GEMs Modules**

▪ **Possible modifications for SBS GEMs**

- \Rightarrow Change in Window foil:
	- Use Copper-Kapton foil instead of Aluminum-Kapton foil
- \Rightarrow Change in Cathode foil:
	- Use the foils with holes
- \Rightarrow Explore option of combination of:
	- Al-Kapton window foil, Al-Kapton cathode foil, and GEM1 has Al as the top layer
	- Cu-Kapton window foil, Cr-Kapton cathode foil, and GEM1 has Cr as the top layer
- ⇨ Random electrode sectorization in GEM foils

Summary

● UVa GEM group has a highly successful fabrication program for large area GEMs

○ Capable of operating under extreme high rate conditions

● PRad detector performed stably in beam during the whole experiment

- Efficiency above 95%, position resolution of 72 µm
- Improved the PRad experiment resolution by a factor of 20

● Challenges for GEMs tracking from High Rate in SBS Experiments

- Challenges have been addressed and changes have been implemented to restore GEMs efficiency
	- Using Parallel Power Supply for HV distribution
	- Modifying resistive divider to reduce the effect of high rate on E field in GEMs
- Explored changes in SBS GEMs configuration to reduce photon background effects
	- Modification in the combination of Window-Cathode-GEM1 foils

● Incoming activities at UVA Detectors Lab

- Construct two more large GEM modules (150 cm x 40cm) for SBS experiments
- Start the production of 18 modules for MOLLER experiment
- R&D on Gas Detector for EIC (Electron Ion Collider)
- **○ Looking for a Postdoc to join our team!** 19

- *● Sincere thanks from our UVA Detector lab to:*
	- **○ The MPGD community for thorough R&D efforts**
	- **○ Continuous support from CERN/PCB Workshop**
	- **○ US Department of Energy, Office of science, Office of Nuclear physics award number DE-FG02-03ER41240**

❖ **Triple-GEM Trackers for Moller Experiment**

 \Rightarrow Improvements in design for HV distribution, gas flow, shielding & readout based on experience with SBS GEMs

- ⇨ Moller prototype-I was successfully assembled and expected to get cosmic and X-Ray data next week.
- \Rightarrow Moller critical requirements:
	- Consistent internal gas flow and equal gas pressure in entire GEMs
	- Suppressing background created in GEM modules due to intense low energy photon environment 22

GEM use in SBS

- GEMs in the electron arm will be used to track the particles trajectories. \bullet
- GEMs can meet all the requirements of the SBS program: \bullet
	- At least 500 kHz/cm² rates. \circ
	- Large acceptance of 75 msr. O
	- Good spatial resolution of 70 um. \circ

Pb-Glass

U-V GEM Construction

- Construction began in August 2020. \bullet
- Foils are stretched to guarantee flatness and glued together.
- Four U-V GEMs completed by May 2021. \bullet

SBS GEM Types

INFN X-Y

UVa X-Y

UVa U-V

SBS GMn/GEn Spectrometers

BigBite Spectrometer (Electron Arm)

Super BigBite Spectrometer (Neutron/Proton Arm)

GEM Commissioning at JLab

- Layers stacked together on a large cosmic stand.
- Multiple layers with hits can be used to form tracks.
- Tracks are projected through all layers to look for real hits.

 \times 200

 $\times 20$

 10.5

 Y (mm)

 Y (mm)

High Rate Tracking

- Large number of possible of 2D hit combinations.
- "Fake hits" from noise would artificially reduce the tracking efficiency.
- Signal on top of a large background could be lost, reducing the efficiency.

Tracking Procedure

- Form all 2D hit combinations from strips.
- Filter hits using a variety of thresholds
	- **Cluster ADC** \circ
	- Correlation coefficients Ω
	- ADC asymmetry \circ
	- Timing cuts \circ
- Form all possible tracks through hits on layers
	- Cut on calorimeter region \circ
	- Cut on projection back to target \circ

U-V GEM Readout

- UVa group has produced 50 X-Y and 4 U-V GEMs for the SBS experiments.
- National Institute for Nuclear Physics (INFN) in Italy has produced 12 X-Y GEMs. \bullet
- Technological improvements have made U-V orientation GEMs possible.
- U-V GEMs can be larger \Rightarrow Reduce size of dead areas. \bullet
- U-V GEMs provide extra coordinate information \Rightarrow Improved tracking results. **U-V Readout Strips**

GEM Detectors

- Sensitive area: 120 x 120.6 cm² \bullet
- Central hole: diameter 4.4 cm \bullet
- Non-sensitive area 7.4×7.4 cm²

Triple GEM detector

The world's largest **GEM** chambers

PRad GEM detector in UVa Detector Lab

Active Divider

Figure: AVD Schematic

Credit: Hans Muller and his group at Cern

- we are going to give this a try too
- parallel power supply is the best solution but expensive
- **● Handling the rate of 500 kHz/cm2 is not difficult for GEMs, but the challenge here is doing that over a very large area**
	- Very high rates and high occupancy in long readout strips
	- High current drain into the GEMs causing voltage drops in divider and protective resistors
- **● SBS high rate environment:**

VERSITY

- Very high luminosity ~1038
- GEMs are operating under unprecedented integrated rates (active area x local rate):~ 3 GHz/chamber
- About 3 MHz in each readout strip
- **UVa GEM trackers are performing very well in high rates**
	- Overall good efficiency
	- Very stable: very few HV trips
	- Noise levels sufficiently low
	- Good gain: signals well above noise
	- Very good resolution: close to what was achieved with cosmic's
	- Raw occupancy levels as high as 30%: with cuts, down to a few percent level.
	- Real time firmware zero suppression has been working very well.
	- Data volumes manageable

- \Rightarrow The matching requires that for each GEM hit that originates from target, its projected position on HyCal must be within a 6σ range around the HyCal reconstructed position $Rmatch = 6 \times \sigma HyCal$
- \Rightarrow HyCal position resolution is 20 times larger than GEM position resolution

