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The GEM Program at JLab

⇨ SBS (Super Bigbite Spectrometer) for Nucleon form factors
■ Front tracker:  6 GEM layers, active area of 150 × 40 cm2

■ Back tracker:  11 layers, active area of 200 × 60 cm2

⇨ SoLID (Solenoid Intensity Device) for Precision Measurements in QCD & Electroweak sectors
■ 120 GEM modules expected, active area of each module ~3300 cm2

⇨ MOLLER  for Precision measurement of weak charge of the electron Qe
W

■ 4 GEM tracker layers:  each has 7 trapezoidal shaped modules
■ Active area of each module ~2000 cm2

SoLID

MOLLER

❖ Versatile triple-GEM tracking systems at JLab

⇨ PRad: Both GEM modules were constructed by UVa
■  Highly stable performance in beam during the whole PRad experiment
■ PRad GEMs will be used in the searches for Dark sectors

⇨ SBS: Built 4 front-tracker layers & 11 back-tracker layers (48 modules)
■ SBS GEM modules are currently working very well in high intensity beam

⇨ Moller: Completed prototype-I, start production of 18 modules in 2023
⇨ SoLID:  Completed one prototype, finalize design

❖ UVA role in GEM program at JLab

SBS 

⇨ PRad for Proton Charge Radius measurement
■ One GEM layer:  constructed from two large GEM modules 
■ Active area of each module: 120×55 cm2

PRad 
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PRad GEM Detector
❖ PRad GEMs setup at Jefferson Lab

Overlap area

Two Chambers mounted 
overlap at the center

Chambers setup in Hall 
B at JLab

❖ Performance of PRad GEM detector in beam
⇨ Two large area GEM modules (150 x 55 cm2) 

mounted with overlap region (4.4 x 150 cm2) 
to form an opening hole for beam

⇨ Used for position detection of the scattered 
electrons

▪ GEM detector performed highly 
stable in beam during the whole 
experiment

▪ PRad GEM detector improved 
the experiment resolution by a 
factor of 20

▪ PRad GEM Efficiency in beam:  > 95% 

▪ PRad GEM position resolution: 72 µm 
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SBS Triple-GEMs Produced at UVA

▪ 48 modules (50 x 60 cm) for rear tracker 
⇨  Each GEM has 30 sectors, segmentation and protective resistors on top side
⇨ Stack 4 modules to form a layer with active area of 200 x 60 cm2

▪ 4 modules (150 x 40 cm) for front tracker
⇨  Each module has 60 sectors 
⇨  Segmentation and protective resistors on both sides of GEMs

SBS 50cm x 60cm

▪ Performance of UVA GEMs in SBS High Rate Environment
⇨ UVA GEMs have been in beam for GMn (Spring 2021) and GEn-II (Now) experiments
⇨ Working very stable at high luminosity (~1038) and unprecedented integrated rates
⇨ Have sufficiently low noise levels; signals well above noise
⇨ Have very good resolution: close to what was achieved with cosmic’s

▪ Challenges for GEM tracking systems at JLab 
⇨ Hit rate exceeding 500 kHz/cm2 over a large active area of GEM modules
⇨ High background from Intense low energy photon environment

SBS 150cm x 40cm
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Challenges from High Rate in SBS Experiments

⇨ GEM efficiency during GMn experiment 
(Spring 2021) significantly drops as beam 
current increases

⇨ Future SBS experiments (GEn-rp, GEp-V) 
are predicted to have 10x the luminosity of 
GMn experiment and expected to face 
similar limitations on a larger scale

▪ Cosmic data of SBS GEMs
⇨ Stable with high efficiency

⇨ Sufficiently low noise levels 

⇨ Good resolution

❖ Efficiency drop in SBS high-rate experiments:

❖ Possible causes:
⇨ High voltage (HV) power supply using resistive dividers limits appropriate 

field strength in multiple regions in GEM modules

⇨ High rates increase the difficulty for tracking

❖ Solving high-rate problem in SBS:

⇨ 1st  Optimize tracking algorithm for high rate

⇨ 2nd  Modify HV power supply to restore electric field in GEMs

⇨ 3rd Optimize cathode structure to reduce background created in GEM modules6



Limitation of Resistive Divider in SBS GEM Modules

⇨ Currents in & out of GEM electrodes increase with rate

⇨ They alter the HV distribution at higher rates, weaken the E field in GEM holes

⇨ Voltage drop in protective resistors further weakens electric field in GEM holes

⇨ Reduced E field in GEM holes ⇒ reduced gain ⇒ reduced efficiency 

⇨ Partial solution: Lower resistance of 

HV divider to reduce ratio of GEM 

electrode current and main current 

in divider ⇒ reduce the problem 

with efficiency lost 

⇨ Better solution: use parallel power 

supply for each individual region in 

GEM module

⇨ Cost-effective solution:  Use active 

HV divider to adjust HV accordingly 

to beam current intensity 

❖ Dropping of electric field in GEMs at high rate ❖ Possible solutions to restore 

electric field in GEMs
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Optimizing HV Distribution for SBS GEM Modules  

❖ Generating high rate environment @ UVa

⇨ A photon beam is sent from X-Ray source to GEMs: 

■ 10x10 cm2 GEM  modules placed 40 cm away from source
■ 50x60 cm2  GEM  module placed 70 cm away from  source

⇨ X-ray generator specifications

■ Photon energy range: up to 50 keV
■ Photon flux at distance of 40cm: 56 MHz/cm2 (50 keV /1 μA) 

⇨ Hit rates on GEMS

■ ~0.5 % of x-rays are converted into MIP equivalent
■ Charge deposition equivalent to MIP rate of 20 MHz/cm2 can be reached

⇨ Investigate the dependence of HV distribution on hit rate

⇨ Measure readout (RO) current (collecting from RO connectors) vs. hit rate

⇨ Estimate the gain vs. hit rate through the change of RO current vs. hit rate

❖ Evaluating the dependence of GEMs efficiency  on HV 

distribution & hit rate 
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Changes in Voltage Distribution vs. Hit Rate  

❖ Voltage across triple GEM regions change as hit rate increases  

Figure: Triple GEM regions

⇨ Significant loss in voltage across  GEM 3

⇨ Effect is less severe in GEM 2 and GEM 1

⇨ Voltage across drift, and the first transfer region goes up noticeably

11 µA

112 µA

25 µA

26 µA

4 µA

110 µA

42 µA
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Solutions to Restore Efficiency of SBS GEMs in High Rate  

❖ Modify Resistive Divider  

⇨ Limitation of the divider is lifted

⇨ Only the effect of protective 
resistors remains

❖ Parallel power supply for 

individual GEM regions  
Resistive Divider (kΩ)

Resisto
r Old Divider 

(GMn)
New Divider 

(GEn)

R0
850 425

R1
550 275

R2
500 250

R3
450 220

⇨ Reduce divider resistance by a factor of two → reduce the ratio 
between currents on GEM electrodes and main current through divider

⇨ 10%  increase in resistance across GEM3 to compensate for voltage 
drop on protective resistors
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Iterative Correction for Voltage Drop on Protective Resistors

⇨ RO current increases linearly with the rate as:

■ Parallel power supply is used for individual regions in GEMs 

■ Bypass the protective resistors 

⇨ Applying corrections on the parallel power supply to compensate for voltage drop on protective resistors

■ An iterative correction of 3 steps recovers > 90% of the efficiency loss
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Recovery of Efficiency Lost in SBS GEM Modules 

⇨ Parallel Power Supply with 

iterative correction is used 

for front tracker GEMs

⇨ Modified Resistive Divider is 

used for back tracker GEMs

⇨ SBS GEMs worked well in 

beam with:

■ Stable performance, 

high efficiency and 

good resolution

■ Meeting (or exceeding) 

design parameters

❖ All solutions tested at UVA are now implemented at GEn Experiment in Jefferson Lab:

Fig.1:  Efficiency maps with: (a) low beam current on Carbon foil target            

(b) 30μA of beam current on 3He target

Fig.2:  Efficiency maps with 30μA of beam current on 3He target for  GEM module

 using parallel power supply (a) without correction and (b) with correction

Fig. 2

(a)

(b)

(a)

(b)

Fig. 1
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Reducing Background Created in GEM Detectors  

▪ Interactions between photon background and Cathode layer 

resulting in secondary electrons
⇨ Low-energy photons:  Photoelectric Effect,  Compton Scattering

⇨ High-energy photons: Pair Production

▪ Problems with secondary electrons created in drift cathode layer

⇨ Drifting towards GEM foils, multiplying in GEM holes, then creating false signals

⇨ Lowers GEM efficiency

⇨ Causing problem with GEM tracking analysis

▪ Optimizing configuration of GEM cathode foil to reduce photon 

background effects
⇨ Material of the conducting layer of cathode layer

⇨ Structure of conducting layer (absence/presence of etched out holes)

⇨ Orientation of cathode layer in GEM module
13



Optimizing Cathode Configuration for Moller GEMs  

Geant4 Simulation
⇨ Send a simulated beam of a x-ray source into a 

simulated 10cm x 10cm GEM module

Experiment setup to verify simulation

⇨ Investigate distribution of 

secondary electrons created 

in the drift volume for 

different configurations of the 

cathode foil

⇨ Building 10cm x 10 cm triple GEM 

modules with cathode 

configurations have been simulated

⇨ Taking data with X-Ray source 

which have been simulated

⇨ Based on the distribution of 

number of hit collected by RO 

board vs. X-Ray current to verify 

simulation results
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Cathode Structure vs. Background Levels 

Simulation result Experimental result

▪ Conclusion
⇨ Number of higher-energy secondary electrons in the drift volume is slightly lower with perforated cathode foil.

⇨ Number of hits collected from RO board is slightly lower with perforated cathode foil

⇨ Having holes in copper layer also helps to reduce multiple scattering of real signal

⇨ Cathode foil in Moller prototype-I has solid copper conducting layer → will be changed to perforated copper conducting layer

Investigating two structures of cathode foil in the GEM module:
⇨ Cathode foil has a perforated copper layer (similar hole pattern as GEM foils).

⇨ Cathode foil has a solid copper layer
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Cathode Orientations vs. Background Levels 

Simulation result Experimental result

Conclusion
⇨ Photon absorption is identical regardless of orientation

⇨ Number of secondary electrons in the drift gas region is significantly lower with upstream orientation

⇨ Number of hits collected from RO board is lower with upstream orientation

Investigating two orientations of cathode foil in the GEM module:
⇨ Cathode foil made of two attached layers: Copper (5 μm) and Kapton (50 μm)

⇨ Conducting copper layer of cathode foil is upstream of beam (facing towards incident particles) 

⇨ Conducting copper layer of cathode foil is downstream of beam (facing away from incident particles)
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Cathode Material vs. Background Levels 

Simulation result Experimental result

▪ Conclusion
⇨ Photon absorption is significantly higher for copper layer

⇨ Photons passing through aluminum cathode foil strikes on copper layer of 

1st GEM foil & creates secondary electrons which induce false signals

⇨ Number of hits collected from RO board is lower with copper cathode foil

⇨ Need to optimize the top layer of GEM1 to reduce effect of photon bkgs

❖ Investigating two conducting materials of cathode foil in the GEM module:
⇨ Cathode foil:  5.0 µm copper layer  vs.  1.0 µm aluminum layer 
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Possible Configurations for GEMs in High Rate

▪ Possible modifications for SBS GEMs
⇨ Change in Window foil: 

■ Use Copper-Kapton foil instead of 

Aluminum-Kapton foil

⇨ Change in Cathode foil:

■ Use the foils with holes

⇨ Explore option of combination of: 

■ Al-Kapton window foil, Al-Kapton cathode foil, 

and GEM1 has Al as the top layer

■ Cu-Kapton window foil, Cr-Kapton cathode 

foil, and GEM1 has Cr as the top layer

⇨ Random electrode sectorization in GEM foils

▪ Current Design of SBS GEMs Modules

Window foil

Cathode foil
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Summary
● UVa GEM group has a highly successful fabrication program for large area GEMs

○ Capable of operating under extreme high rate conditions

● PRad detector performed stably in beam during the whole experiment
○ Efficiency above 95%, position resolution of 72 µm
○ Improved the PRad experiment resolution by a factor of 20

● Challenges for GEMs tracking from High Rate in SBS Experiments
○ Challenges have been addressed and changes have been implemented to restore GEMs efficiency

■ Using Parallel Power Supply for HV distribution
■ Modifying resistive divider to reduce the effect of high rate on E field in GEMs

○ Explored changes in SBS GEMs configuration to reduce photon background effects
■ Modification in the combination of Window-Cathode-GEM1 foils

● Incoming activities at UVA Detectors Lab
○ Construct two more large GEM modules (150 cm x 40cm) for SBS experiments
○ Start the production of 18 modules for MOLLER experiment
○ R&D on Gas Detector for EIC (Electron Ion Collider)
○ Looking for a Postdoc to join our team! 19
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Incoming GEMs Tracking Systems at JLab

❖ Triple-GEM Trackers for Moller Experiment

⇨ Improvements in design for HV 

distribution, gas flow, shielding 

& readout based on 

experience with SBS GEMs

⇨ Moller prototype-I was successfully assembled and expected to  get cosmic 

and X-Ray data next week. 

⇨ Moller critical requirements:

■ Consistent internal gas flow and equal gas pressure in entire GEMs

■ Suppressing background created in GEM modules due to intense low energy 

photon environment 22
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Performance of UVA GEMs in SBS High Rate Environment

32

● Handling the rate of 500 kHz/cm2 is not difficult for GEMs,  but the 
challenge here is doing that over a very large area

○ Very high rates and high occupancy in long readout strips
○ High current drain into the GEMs causing  voltage drops in divider 

and protective resistors

● SBS high rate environment:
○ Very high luminosity ~1038 
○ GEMs are operating under unprecedented integrated rates (active 

area x local rate):~ 3 GHz/chamber
○ About 3 MHz in each readout strip

●  UVa GEM trackers are performing very well in high rates
○ Overall good efficiency
○ Very stable: very few HV trips 
○ Noise levels sufficiently low
○ Good gain: signals well above noise
○ Very good resolution: close to what was achieved with cosmic’s
○ Raw occupancy levels as high as 30%: with cuts, down to a few 

percent level.
○ Real time firmware zero suppression has been working very well.
○ Data volumes manageable



GEM HyCal Matching Mechanism in PRad

⇨ The matching requires that for each 

GEM hit that originates from target, 

its projected position on HyCal must 

be within a 6𝜎 range around the 

HyCal reconstructed position

𝑅𝑚𝑎𝑡𝑐h = 6 × 𝜎𝐻𝑦𝐶𝑎𝑙
⇨ HyCal position resolution is 20 times 

larger than GEM position resolution
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