

Gaseous Detectors for Preclinical Proton Beam Monitoring, Characterization and Imaging

J. Bortfeldt¹, O. Belker¹, A. Denker², A. Dittwald², F. Englbrecht¹, A. Frenzel¹, J. Gebhard¹, J. Gordon³, G. Holthoff¹, G. Hu¹, Z. Huang¹, F. Kähler¹, P. Lämmer¹, A. Lange¹, M. Meurer¹, L. Marchfelder¹, S. Meyer⁴, M. Pinto¹, O. Schackmann¹, S. Schinzel¹, D. Schmidt¹, K. Schnürle¹, M. Sitarz⁵, C. Steinbrecht¹, M. Würl¹, K. Parodi¹

1: Department of Medical Physics, Ludwig-Maximilians-Universität München, Germany

- 2: Protonentherapie Helmholtzzentrum Berlin, Germany
- 3: Pyramid Technical Consultants Europe, Ltd., Henfield, United Kingdom

4: was at LMU Munich, now at Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA 5: Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark

7th International Conference on Micro Pattern Gaseous Detectors – Rehovot, Israel

Context: Particle Therapy

low energy ions: $dE/dx \sim 1/\beta^2$

- → favorable depth-dose:
- none behind tumor
- low in entrance

better tumor conformality \rightarrow low out-of-field dose

ballistic advantages obvious BUT therapeutical advantages not fully demonstrated

Dec 16, 2022

portable platform, installed at clinical facility: ERC, 2017 – 2022, PI K. Parodi, Imu.de/sirmio

Dec 16, 2022

portable platform, installed at clinical facility: ERC, 2017 – 2022, PI K. Parodi, Imu.de/sirmio

Dec 16, 2022

LMU

First Full System Test @ DCPT in Sept. 22

monitor: front IC

pCT: TPC

pCT: Micromegas Trackers

Dec 16, 2022

monitor:

rear IC

Dec 16, 2022

Jona Bortfeldt - Gas Detector R&D for Preclinical Proton Beams

6

requirement: scan beam profile (20mm \rightarrow 0.5mm) and position longitudinally prior to irradiation \rightarrow beam parameters for treatment planning

constraints

- good 2d resolution \rightarrow pixels
- no beam distortion before measurement (~20-50MeV)
- large dynamic range

Beam Profile QA System MAXIMILIANS-UNIVERSITÄT MÜNCHEN

requirement: scan beam profile $(20 \text{mm} \rightarrow 0.5 \text{mm})$ and position longitudinally prior to irradiation \rightarrow beam parameters for treatment planning

constraints

- good 2d resolution \rightarrow pixels
- no beam distortion before measurement (~20-50MeV)
- large dynamic range

solution (inspired by Brunbauer et al. 2018 JINST 13 T02006 & Iguaz, RD51 CM 2018)

- \rightarrow Glass Micromegas with optical readout
- \rightarrow mounted on linear stage

Dec 16, 2022

LUDWIG-

LIVIU

In-House Production: Optical Bulk Micromegas

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- I. lamination of 2 layers photoimageable coverlay on ITO glass
- II. stretched mesh on top and lamination of 3rd layer coverlay

III.UV exposure with suitable mask: pillars & rim

IV.wet development, washing & curing

BSc Belker, Frenzel

Dec 16, 2022

detector tests @ HZB, 68MeV p

Dec 16, 2022

Profiling of SIRMIO Beam @ DCPT

successfully used in beam line characterization @ PSI (2021) & DCPT (2022) Dec 16, 2022 Jona Bortfeldt - Gas Detector R&D for Preclinical Proton Beams

11

Proton Beam Monitoring

Dec 16, 2022

UIVIGE UITRA-Thin Beam Monitor Chambers

two monitor chambers

- active area 64x64mm²
- 2 strip planes (64 strips, 40nm Alu on 10µm Kapton)
- 1 dose gap (unsegmented, 40nm Alu on 2µm Mylar)

custom monitor chamber DAQ

• register charge/integration cycle

custom DAQ & beam control system

- enable beam & disable beam after target dose was reached
- real time \rightarrow FPGA

MSc Steinbrecht & Lämmer, PostDoc Gebhard, Englbrecht, Pinto

Dec 16, 2022

LMU

→ linear rate behavior of monitor ICs and DAQ system over 4 orders of magnitude

- beam gating works
- this week ongoing @ DCPT: test of treatment plan execution

Dec 16, 2022

Proton Imaging

Dec 16, 2022

Jona Bortfeldt - Gas Detector R&D for Preclinical Proton Beams

15

Particle Tracking Proton CT

spatial information from 2d floating strip Micromegas trackers residual range (\rightarrow energy loss) from TPC with vertical absorbers

4 aluminum FSM trackers dual strips (x & y)

dual strips (x & y) 64x64 mm²

mouse holder

x, y, z, ϕ movement sterile environment

Time Projection Chamber range detector 65 absorber foils (600µm Mylar+Kapton) 8mm gaps in between

Dec 16, 2022

Experimental and Simulation Studies

FLUKA simulation and iterative **reconstruction** studies **since 2018** (Meyer, Hu, Englbrecht, Würl): detector and system parameters, reconstruction speed & accuracy

R&D and optimization of **in-house production** methods **since 2018**

aluminum Micromegas (Meurer, Holthoff, Schmidt, Lämmer, Marchfelder, Schinzel, Lange)

- 2019: prototype, 22MeV proton beam test with APV25 electronics
- 2020: prototype, 1 week irradiation with 90 Sr source ~ 100 tomographies \rightarrow still alive
- 2021: series detector, 80GeV pion & muon beam test with VMM electronics
- 2022: series detector, 75MeV proton beam test with VMM electronics

TPC range detector (Kähler, Schackmann, Holthoff, Lämmer)

- 2019: prototype with absorbers, 22MeV proton beam tests with APV25 electronics
- 2021: series detector without absorbers, 80GeV pion & muon beam test with VMM electronics

September 2022: system test

all trackers + TPC (13/65 absorbers) + VMM SRS + discharge protection + SIRMIO proton imaging beam

Dec 16, 2022

- 12µm Al anode strips & y-readout- strips (direct coupling) on 32µm Kapton & glue
- → x-readout strips outside active area
- \rightarrow 0.15% X₀ per detector (70% from mesh)

LMU LINU ILLANS-UNIVERSITAT MÜNCHEN LINU Aluminum Floating Strip Micromegas

- 12µm Al anode strips & y-readout- strips (direct coupling) on 32µm Kapton & glue
- \rightarrow x-readout strips outside active area
- \rightarrow 0.15% X₀ per detector (70% from mesh)
- electrodes: photolithography (& etching) mesh support pillars: photolithography contacts & resistors: screen print accurately glue on support

Dec 16, 2022

BSc Schmidt, Meurer, Marchfelder, Schinzel
Jona Bortfeldt - Gas Detector R&D for Preclinical Proton Beams

NU LUDWIG-MAXKIMILIANS-INIVERSITÄT-DORCHEN NU See height vs E_{drift} @ 40.6kV/cm pulse height vs E_{amp}

- full size Alu Micromegas
- APV25 DAQ: rate < 1kHz
- Ne:CF₄ 80:20 vol. %

x: typical transparency behavior y: influence of electron drift velocity \rightarrow bi-polar signal pulse height ratio y/x ~ 0.5 \rightarrow well usable

Dec 16, 2022

Dec 16, 2022

- SRS VMM + external discharge protection circuit → successful operation
- analysis currently ongoing

In-house Production: TPC

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Dec 16, 2022

- readout structure: 5 individual four-layer PCBs, with pillars & screen printed contacts
 → glued with precision onto common base
- 532 pad, individually read out \rightarrow 65 gaps for range determination

Pads zur Registrierung Anodenpads zur on Spuren aus dem Detekto Reichweitenbestimmund HV via printed resistor eiterbahnen Pfostenstruktur verbunden 1 10 Kähler mit den Anodenpads

Jona Bortfeldt - Gas Detector R&D for Preclinical Proton Beams

readout pad

anode pad

TPC: Field Shaping Absorbers

- 2kV drift field/96mm
- sandwich: 600µm Mylar equivalent thickness
- field-shaping 50nm Aluminum strips, pitch decreasing \rightarrow drift field increases downwards \rightarrow efficient extraction of ionization electrons
- production currently ongoing

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- SIRMIO: portable small animal proton irradiator platform for pre-clinical research
- gaseous detector R&D program for beam characterization, monitoring & proton imaging
- challenge: low energy, small beam diameter, high rate
- beam-profiler: optical glass Micromegas
- beam monitor: ultra-thin aluminum strip ICs + DAQ & beam control
- proton CT system: aluminum Micromegas trackers & TPC range detector
- in-house production & assembly
- several successful measurement campaigns with prototypes & series detectors

this work received support from: ERC grant 725539 (SIRMIO), H2020 grant 730983 (INSPIRE), H2020 grant 101008548 (HITRIplus)

Dec 16, 2022

- SIRMIO: portable small animal proton irradiator platform for pre-clinical research
- gaseous detector R&D program for beam characterization, monitoring & proton imaging
- challenge: low energy, small beam diameter, high rate
- beam-profiler: optical glass Micromegas
- beam monitor: ultra-thin aluminum strip ICs + DAQ & beam control
- proton CT system: aluminum Micromegas trackers & TPC range detector
- in-house production & assembly
- several successful measurement campaigns with prototypes & series detectors

this work received support from: ERC grant 725539 (SIRMIO), H2020 grant 730983 (INSPIRE), H2020 grant 101008548 (HITRIplus)

Dec 16, 2022

Jona Bortfeldt - Gas Detector R&D for Preclinical Proton Beams

Thank you!

backup

Dec 16, 2022

Jona Bortfeldt - Gas Detector R&D for Preclinical Proton Beams

26

Floating Strip Micromegas Detectors LUDWIG-MAXIMILIANS-UNIVERSITÄT

Micromegas detectors

MÜNCHEN

LMU

- charged particles \rightarrow ionization of gas
- amplification of ionization electrons in avalanches
- charge collection on finely segmented readout structures
- discharge mitigation: individual HV connection & capacitive coupling
- high-rate capable: > 5MHz/cm²
- good spatial resolution: <80µm
- very low material budget
- capable to produce these detectors in-house \rightarrow tune according to application

Dec 16, 2022

Source Test: TPC with VMM Electronics

⁵⁵Fe event rate in TPC vs distance to source

Dec 16, 2022

TPC Prototype @ 22MeV Protons

1mm strips

1mm gap

• 88mm drift region

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- 64x64mm² strip Micromegas readout structure
- $50\mu m$ Mylar field cage
- absorbers: 3 field-shaping, 4 plain (PTFE or Mylar)

beam tests @ 22MeV & 75MeV p

→ understand concept

Dec 16, 2022

LMU HUDWIG-MAXIMILIANS-HONCHEN FLUKA Simulation: Geometry & Parameters

detailed simulation of trackers, object & TPC range detector

→ trackers with aluminum electrodes considerably better & spacing > 7cm: mean path resolution 0.18mm

 \rightarrow TPC absorber thickness 500 – 750µm: compromise between complexity & **RSP accuracy < 0.3%**

Dec 16, 2022

Jona Bortfeldt - Gas Detector R&D for Preclinical Proton Beams

Concept: Optically Read Out Micromegas

ionization by particle beam, 0.5kV/cm

gas amplification avalanche in Ne:CF₄

→ local & proportional production of charge + photons (620 & 300nm)

optically transparent anode 25x25mm² with support pillar structure

detect optical photons with EM CCD

- \rightarrow beam position & intensity
- → gas gain adjustable for integrating or single particle detection
- → exposure time and binning adjustable

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

SIRMIO Aluminum Micromegas Production

readout structures (12 μ m alu on 32 μ m Kapton)

- confirm HV stability, bubble repair
- glue with O(30 μm) accuracy on support
- stretch and glue micro-mesh
- stretch and glue cathode + gas window
- clean & assemble

Bac theses Marchfelder, Meurer

Dec 16, 2022