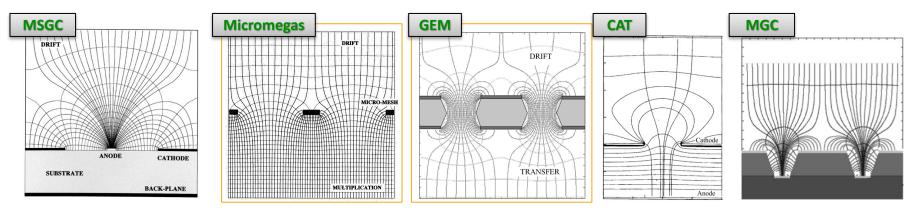
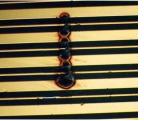


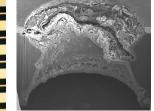
Impact of the gas choice and the geometry on the breakdown limits in MPGD detectors

P. Gasik^{1,2}, A. Mathis³, L. Lautner^{3,4}, L. Fabbietti³, H. Fribert³, T. Klemenz³, B. Ulukutlu³, T. Waldmann³



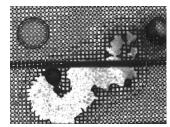
SHORT OVERVIEW


December 11-16, 2022



Following: V. Peskov, "Discharge phenomena in gaseous detectors", RD51 Meeting, Munich 2018 (<u>link</u>)

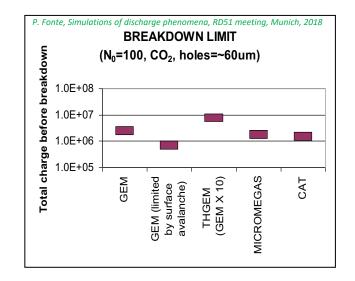
- In all these structures, there are regions with ~parallel field lines
- Streamers can develop by the same mechanism as in PPAC
- No quenching by field reduction, when streamers reach the cathode \rightarrow full breakdown


F.Sauli, IEEE NSS 2002

3

J. Merlin, "Single-hole discharges in GEMs", RD51 Meeting, TUM 2018 (link)

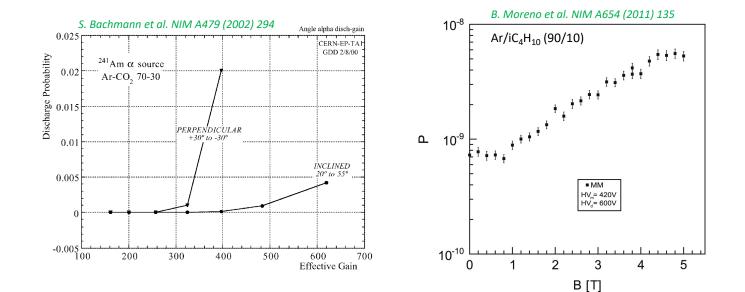
M. Chefdeville (NIKHEF), "The pixel readout of TPCs", (link)



J.Galan, RD51 meeting (link)

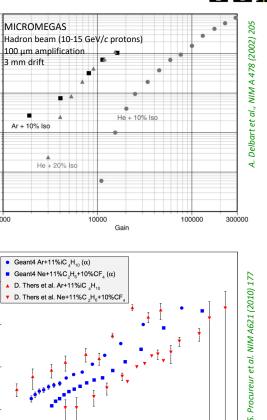
Critical charge in MPGDs

- In case of MPGDs we mainly discuss the streamer mechanism and spark discharges
- Critical charge measurements in MPGDs point to a limit of 10⁶-10⁷ e, depending on the reference
- Different geometries, gases, sources (x-ray, alphas, etc.)
- Is the limit the same if studied differentially?


F. Sauli, i	Report at the RD51 collaboration mee DETECTOR	ting in Amsterda MAX GAIN	m, 2008 MAX CHARGE
i	MSGC	2000	4 10 ⁷
ii	ADV PASS MSGC	1000	2 10 ⁷
iii	MICROWELL	2200	4.4 10 ⁷
iv	MICROMEGAS	3000	6 10 ⁷
v	GEM	2000	4 10 ⁷

Charge density limit

- Primary charge density is a more relevant parameter than the total number of electrons
- Source inclination studies higher charge densities per hole for perpendicular tracks impinging a GEM
- B||E studies reduced transverse diffusion higher (surface) charge density



Critical charge in MPGDs

- Clear gas dependencies ٠
- Discharge probability reduced for lighter gases \rightarrow charge density •
- Clear correlation between discharge rate and $\langle Z \rangle$ of a gas mixture ٠

- Simulations cannot describe Ne- and Ar- data using only W_i (effective ٠ ionization potential) weights
- Intrinsic properties of the working gas (transport, amplification, ٠ streamer development) could possibly explain the differences – more studies needed
- Charge limits different for different mixtures? ٠

10⁴

Gain

1.00E-4

1.00E-5

₹ 1.00E-6

spark probal 1.002-7

1.00E-8

1.00E-9

Spark probability

10-

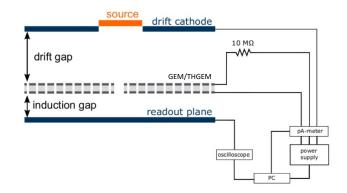
10-6

10

 10^{3}

1000

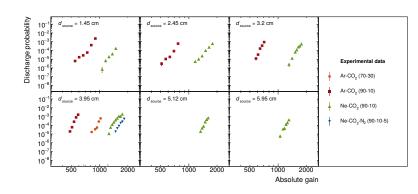
MICROMEGAS

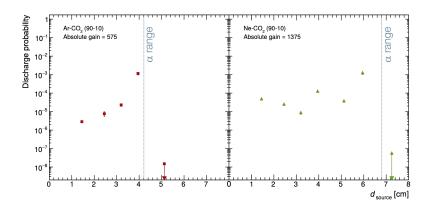

.

3 mm drift

Ar + 10% Iso

GEMs and THGEMs


December 11-16, 2022


GEM discharge probability

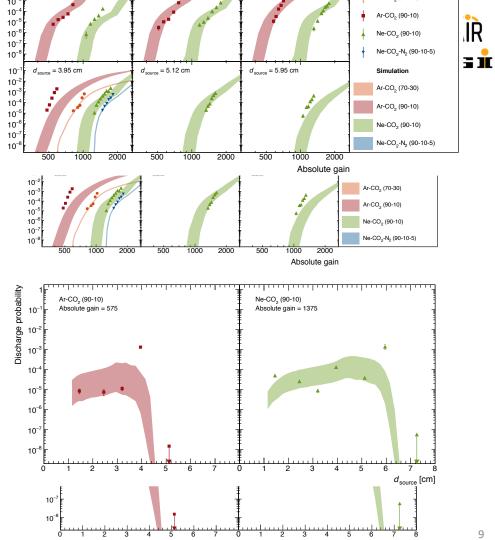
NIM A 870 (2017) 116

8

- Discharge probability of a single, standard GEM upon irradiation with alpha particles:
 - Lower breakdown limits in Argon than Neon-based mixtures
 - Abrupt drop of discharge rate for source distances larger than alpha range
 - Observations consistent with the primary charge density hypothesis
 - Alpha range in Ne longer than in Argon
 - *W*_i (Ar) < *W*_i (Ne)

Gas	ν _d [cm/μs]	$D_{\rm L}$ [\sqrt{cm}]	D_{T} [\sqrt{cm}]	W _i [eV]	<i>r</i> α [cm]
Ar-CO ₂ (70-30)	0.932	0.0138	0.0145	30.2	4.2
Ar-CO ₂ (90-10)	3.26	0.0244	0.0268	28.8	4.8
Ne-CO ₂ (90-10)	2.66	0.0223	0.0219	38.1	6.8
Ne-CO ₂ -N ₂ (90-10-5)	2.52	0.0218	0.0224	37.3	6.9

Critical charge limits in GEMs

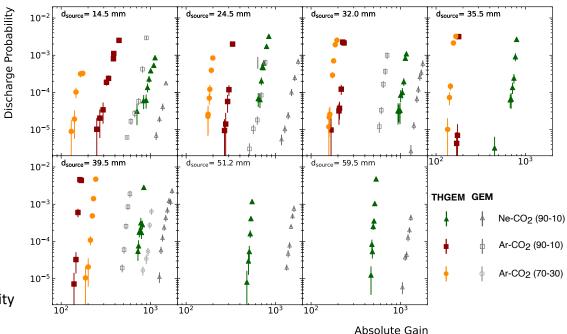

NIM A 870 (2017) 116

9

- GEANT4 based model describes data fairly well over ٠ several orders of magnitude
- Only primary ionization and basic gas properties taken ٠ into account $(D_{\rm L}, D_{\rm T}, v_{\rm d})$
- No additional normalization! ٠

Gas	Q _{crit}
Ar-CO ₂ (90-10)	$(4.7\pm0.6)\times10^6$
Ne-CO ₂ (90-10)	$(7.3\pm0.9)\times10^6$

- Primary charge density \rightarrow driving factor for discharge • formation
- Different Q_{crit} for different gases \rightarrow no universal • Raether limit.

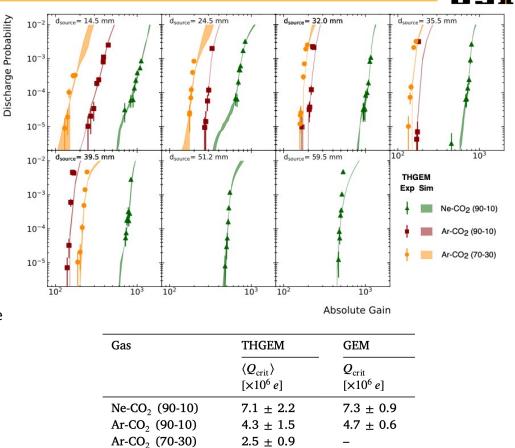

9

THGEM Discharge probability

NIM A 1047 (2023) 167730

• Single THGEM (COMPASS-RICH)

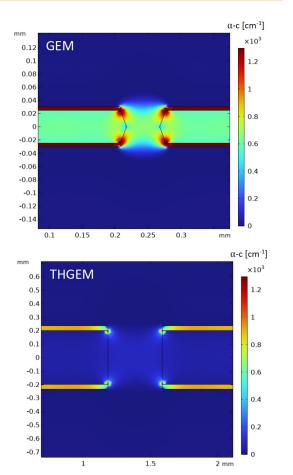
- *(Z)* dependence
 - Ne more stable than Ar \rightarrow charge density
- *d*_{source} dependence
 - Abrupt drop of the discharge rate for
 - d_{source} > alpha range
- Quencher content dependence
 - Larger CO₂ content does not increase stability
- THGEMs less stable than GEMs
 - Primary electrons shared by lower number of holes in THGEMs


Simulation fits

NIM A 1047 (2023) 167730

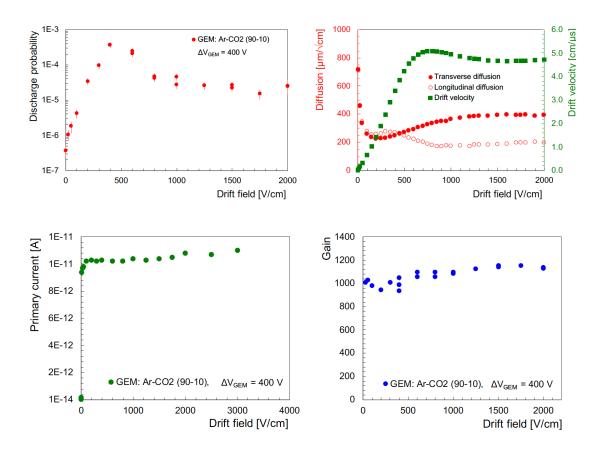
- Simulated discharge curves are fitted to the data by means of χ^2 minimization for each gas and d_{source}

Q_{crit} extracted individually for each distance and averaged using a weighted mean method


- Gas dependency observed again!
- Q_{crit} for both structures agree with each other, in spite of geometrical differences!
- The primary charge limits shall be considered per single holes, not normalized to the hole volume.

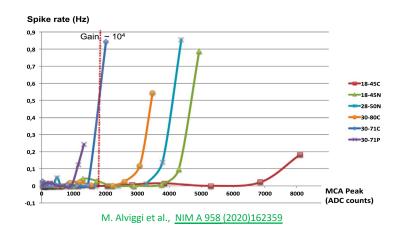
Townsend maps

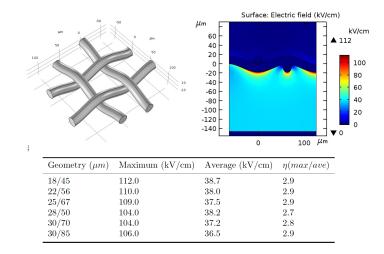
- Q_{crit} for both structures agree with each other, in spite of geometrical differences!
- Townsend coefficient maps for a GEM and a THGEM geometry (Comsol[®] electric field simulation convoluted with Townsend coefficients)
- The "effective volume" of a streamer creation in a THGEM may be comparable to the size of a GEM hole
- Detailed simulations of streamer formation are necessary!
 Also to understand gas dependency of Q_{crit}



Electric field above GEM

- Clear influence of a field **above** the GEM on its stability
- Correlation with drift parameters: diffusion
 → charge density → discharge probability
- Increase for *E* < 400 V/cm not related to gain
- Drop for *E* > 400 V/cm not related to the collection efficiency


MICROMEGAS

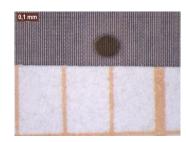

December 11-16, 2022

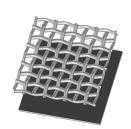
Situation in Micromegas

- Can Micromegas mesh cells be considered as individual amplification units, as GEM holes?
- If so → discharge probability shall scale with the MMG mesh cell size, i.e. higher discharge rate for large-cell meshes (small LPI)
- Difficulty → mesh parameters strongly influence E-field (high fields may further reduce the stability of the detector)
- Measurements with ⁵⁵Fe suggest using high-LPI meshes (Alviggi et al.)
- Field considerations with COMSOL® suggest low-LPI and thick meshes (Bhattacharya et al.)

D.S. Bhattacharya et al., J. Phys. Conf. Ser. 1498 (2020) 012032

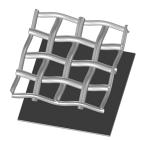
Micromegas studies


B. Ulukutlu and T. Waldmann (TU München)

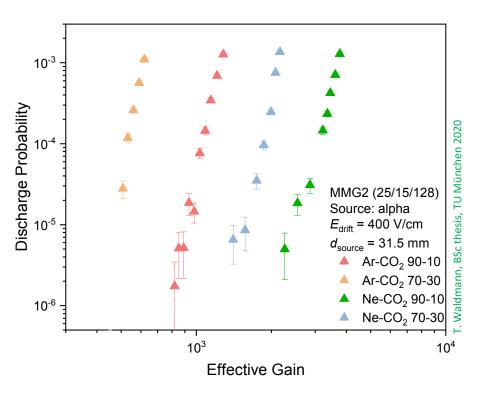


- MMG1 22/13/128
 - Wire distance: 22µm, Wire thickness: 13µm
 - Amp. gap: 128μm, LPI: 730, *T*_{optical} = 39.5%

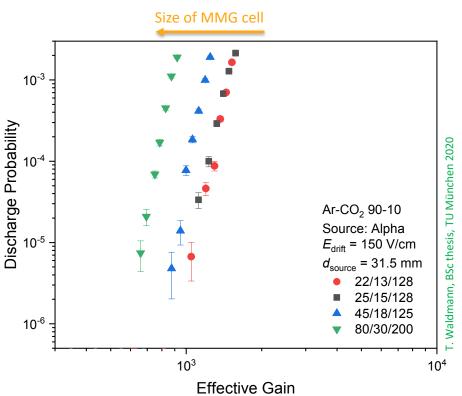
- MMG2 25/15/128
 - Wire distance: 25μm, Wire thickness: 15μm
 - Amp. gap: 128μm, LPI: 640, *T*_{optical} = 39%


- MMG3 45/18/125
 - Wire distance: 45µm, Wire thickness: 18µm
 - Amp. gap: 125μm, LPI: 400, *T*_{optical} = 51%

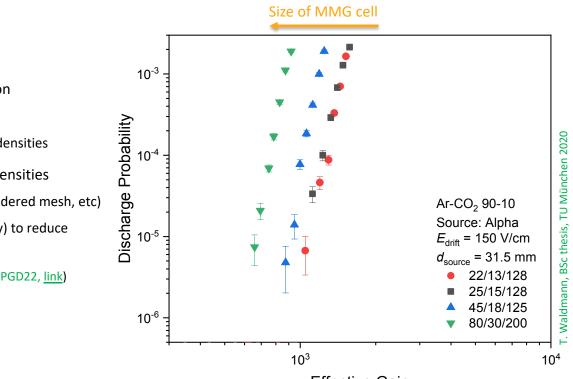
- MMG4 80/30/200
 - Wire distance: 80µm, Wire thickness: 30µm
 - Amp. gap: 200μm, LPI: 230, *T*_{optical} = 52%



17


- Same dependency on the gas mixture as in previous measurements with GEMs and THGEMs
- For streamer and spark discharge development, more quencher does not mean more stability!
- Same order observed with other MMG types
- Primary charge density!

Discharge stability



- Electron transparency ~98% for all MMG
- *d*_{source} shorter than alphas maximum range
- Discharge rate scales with the mesh cell size (optical transparency)
- The influence of high fields can be disregarded by measurements with low charge densities
- Mesh cell as an independent amplification structure

Discharge stability

Effective Gain

- High-rate & wide dynamic range operation
 - → number of cells shall be increased
 - \rightarrow quencher plays a role in terms of charge densities
- Operation at high gains & lower charge densities
 - → field uniformity (peak fields, woven/calendered mesh, etc)
 - \rightarrow better quenchers needed (open geometry) to reduce photon feedback
- See e.g. discussion on TMM detector (K. Liang, MPGD22, link)

SUMMARY

December 11-16, 2022

Discharge probability reduction

- Reduce charge density per single amplification cell
 - Small-pitch GEMs → but production quality (glass GEMs? T. Marley, "The Migdal Experiment", MPGD22 (link))
 - Large-LPI Micromegas → but electron transparency
- Build stacks
 - Charge spread between several independent holes Q_{crit} per hole stays the same!
 - Optimize the electric field above/below the MPGD (diffusion, focusing, extraction/collection) and inside it (gain)
- Optimize gas
 - Light noble gases are preferable
 - Quencher content optimize primary charge density and electron transport properties
 - Open geometries (e.g. Micromegas): UV photons feedback at high gains may lead to a Townsend discharge
 - → well-quenched gases preferable but watch out charge densities!
- High absolute voltages and high fields shall be avoided
 - High fields around defects and residual contamination may lead to instabilities (e.g. glow discharge in neon)
 - Careful detector design (rounded corners, electrode edge effects)
 - Quality control of the upmost importance (see ALICE JINST 16 (2021) P03022, CMS NIM A 1034 (2022) 166716, ATLAS NIM A 1026 (2022) 166143)

R. De Oliveira, RD51 Dynamic range workshop 18.11.21 (link)

More information

Nuclear Inst. and Methods in Physics Research, A 870 (2017) 116-122

Charge density as a driving factor of discharge formation in GEM-based detectors

P. Gasik^{a,b,*}, A. Mathis^{a,b,*}, L. Fabbietti^{a,b}, J. Margutti^{a,c,1}

^a Excellence Cluster Universe, Technische Universität München, Boltzmannstr. 2, 85748 Garching, Germany
^b Physik Department E62, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany

^c Dipartimento di Fisica G. Occhialini-Università Milano-Bicocca, Piazza della Scienza 3. 20126 Milano. Italy

Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167730

Systematic investigation of critical charge limits in Thick GEMs

P. Gasik ^{a,b,*}, L. Lautner ^{c,d,**}, L. Fabbietti ^d, H. Fribert ^d, T. Klemenz ^d, A. Mathis ^d, B. Ulukutlu ^d, T. Waldmann ^d

^a GSI Helmholtzzentrum für Schwerionenforschung GmbH (GSI), Darmstadt, Germany ^b Facility for Antiproton and Ion Research in Europe GmbH (FAIR), Darmstadt, Germany ^c European Organization for Nuclear Research (CERN), Geneva, Switzerland ^d Physik Department, Technische Universität München, Munich, Germany

Thank you!

December 11-16, 2022

Acknowledgements:

- INFN Trieste for THGEMs
- CERN MPT workshop for a variety of MMG samples
- RD51, CERN GDD Lab, Chilo for discussions and good ideas