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● A Thick-GEM (THGEM) is about 10-fold larger than a Gas Electron Multiplier (GEM).

○ Thickness ~0.5 mm, hole diameter ~0.5 mm (0.1 mm rim), 1 mm pitch.

● Thick-GEM configuration: A double-faced THGEM electrode assembled with an induction gap.

● WELL configuration: A single-faced THGEM electrode coupled to the readout plane. No induction gap.

○ Primary ionization in the drift gap. Charge multiplication inside the holes.

○ Signal induction on the anode readouts due to movement of charges in the gaseous medium.

Thick-GEM and WELL detectors
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THGEM configuration in 3D WELL configuration in 3D Working principle of WELL detector

Anode readouts

WELL-top

Cathode



● THWELL: THGEM electrode directly coupled to a readout anode.

● RWELL: THGEM electrode coupled to anode through a resistive layer providing lateral charge evacuation.

○ Graphite sprayed on 0.9 mm FR4. Surface resistivity = 16 MΩ/□. One edge connected to ground.

● RPWELL: THGEM coupled to anode via a resistive material. Charge evacuation via the bulk.

○ 0.7 mm thick LRS glass (ρ=2×1010 Ωcm) conductively attaches the anode and THGEM foil.

Tested configurations
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FR4 thickness 0.4 mm Hole dia. 0.5 mm Edrift 0.5 kV/cm Gas mixture Ne/5% CH4

Drift gap 3 mm Rim 0.1 mm EWELL 15-30 kV/cm
X-ray 

collimation
0.5 mm

Thick WELL (THWELL). Resistive WELL (RWELL). Resistive Plate WELL (RPWELL)



● The currents supplied to the electrodes are monitored.

Discharge id through current measurement
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RWELL 

(810 V)

THWELL 

(745 V)

RPWELL 

(900 V)

Monitored currents supplied to the electrodes in the investigated detector configurations.

● In presence of a discharge: sudden change in current between a pair of electrodes. Polarity of the spikes

indicate direction of current flow.

○ THWELL: intense (~200 nA) discharges between WELL-top and anode.

○ RWELL: quenched (~40 nA) discharges between WELL-top and graphite layer.

● RPWELL: no current fluctuation visible (instrument resolution = 5 nA).

Ref: A. Jash et. al, 

JINST 17 (2022) P11004



● Anode pulses recorded on oscilloscope after a Timing Filter amplifier.

○ Int. time = 10 ns, diff. time = 150 μs : minimum pulse shaping.

● THWELL: saturated pulses.

● RWELL: large pulses (~3 orders of magnitude larger than avalanche case) appear on anode, correlated

with the current spikes from the WELL-top and graphite layer.

● RPWELL: large pulses correlated with sub-nA current fluctuation on WELL-top.

Discharge id through pulse monitoring
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Discharge

Charge ~ few 100 pC

Avalanche

Charge ~ few 100 fC

Induced pulses on RPWELL anode after Timing filter amplifier.

Input pulse to TFA

Output pulse

X scale: 20 ns/div

Ref: A. Jash et. al, 

JINST 17 (2022) P11004



Discharge id through pulse monitoring
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Variation of discharge intensity with applied voltage 

across WELL and the corresponding avalanche charge

Maximum 

avalanche size

Combined distribution of charges induced on 

RPWELL anode in avalanche and discharge modes.

● Pulse height calibrated to charge.

● The endpoint of avalanche charge distribution corresponds to a few 106 electrons.

● In RWELL, the discharge intensity from induced anode pulses is 100 times lower than that from WELL-top

current spikes.

○ Two different mechanisms.

● Discharge intensity from RWELL and RPWELL anode pulses are similar, indicating same origin.

Ref: A. Jash et. al, 

JINST 17 (2022) P11004

RWELL RPWELL



● Stage 1: avalanche size crossing the Raether limit (few 106 e-) breaks down the gaseous medium.

● Stage 2: streamer propagation inducing ~few 100 pC charge on anode.

○ Visible only in resistive configurations.

● Stage 3: streamers connect nearby electrodes at different potential.

○ Discharge of the involved capacitor.

■ Large current flow in THWELL, RWELL.

■ Suppressed in RPWELL.

The discharge phenomenon
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Avalanche size 

> Raether limit

Streamer 

propagation

Hundreds of fC induced signal on anode.

Electron avalanche

Hundreds of pC induced signal on anode.

Gas breakdown

Current flow between the short electrodes.

Conductive paths
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● RPWELL:

○ Effective gain > 104 for 8.04 keV X-ray.

○ Readout protection. No capacitor discharge.

○ Lower probability for gas breakdown.

● Goal: find effect of gas breakdown on RPWELL gain.

○ as a function of distance, time, detector

properties.

● Challenges: discharges occur randomly in time, space.

○ produce discharges at a known, localized region,

at a known time.

● Solution: forced gas breakdown at one region by

producing a charge greater than Raether limit.

Effect of discharges (gas breakdown) on RPWELL gain
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Variation of discharge probability with the applied voltage.

Effective gain vs applied bias across WELL.



Experimental setup
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LCI top

LCI bottom

● A pre-amplification stage to insert large charge locally

○ a localized charge injector (LCI) with open row of holes coinciding with the position of a readout

strip, R0 (the intended discharge location).

○ A low-rate X-ray source, XLCI (Fe55) controlled by a shutter, positioned to irradiate from one side.

● RPWELL biased to operate near discharge regime for a high rate X-ray source, XWELL(Cu-target X-ray tube,

0.5 mm collimation).

Experimental setup (not to scale): shutter OFF

XLCI

Shutter

XWELL



● Opening the shutter produces gas breakdown inside the WELL hole on top of R0:

○ XLCI creates primary ionization in the top gap. Charge, QLCI enters the LCI hole.

○ Charge multiplication in LCI. Gain (GLCI) decided by ΔVLCI.

○ When total charge (QLCI × GLCI × GWELL) crosses the Raether limit, gas breaks down.

■ Identified as larges pulses from R0.

■ Rate controllable using ΔVLCI.

Methodology
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Experimental setup (not to scale): shutter ON



● Find the effect of discharges on the RPWELL gain by monitoring the charge spectrum produced by XWELL.

○ Change XWELL position to quantify the effect as a function of distance.

● Detector gain calculated from Gaussian fit of the photopeak.

● Production of multiple discharges reduces RPWELL gain at regions away from R0.

Methodology
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RPWELL charge spectra with XWELL irradiating a region 1 cm away from R0.

GON

GOFF

Discharge production:

1.2 cm away
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X

X
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● A single discharge has no effect on the gain.

● To see an effect we need multiple discharges over a short period.

○ Shutter kept ON for different durations.

● Amount of gain drop increases with the duration of discharge period (shutter ON).

● Gain drop increases with ΔVLCI (higher discharge rate).

Result

15RPWELL gain variation for different shutter opening times. RPWELL relative gain drop as a function of voltage across the LCI.

Discharge rate

= 0.5 - 1 Hz

Discharge production: 9 mm away



● Repeated spectra acquisition (acq. time = 5 sec) from RPWELL in a cycle of discharge OFF and ON:

○ Different durations of discharge period.

○ Discharge production: 6 mm away.

Result
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Zoomed area showing the fall and recovery times.

● Gain drop occurs within acquisition time (~ 5 seconds).

● The recovery time is about 1 minute.

○ Longer than anticipated from simple R-C calculation for the RP (~10 ms).

Discharge

OFF

ON

Gain variation in a cycle of discharges OFF and ON.

Ref: A. Jash et. al, NIM A 

1045 (2023) 167540



Relative gain drop vs distance from discharge production point for different resistive plates.

Result
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● Gain drop decreases with distance from discharge production point.

○ Effect present throughout the area of the investigated detector (1.5 cm).

● It increases with resistance of the used RP.

R ~ 280 MΩ

R ~ 8 MΩ

Ref: A. Jash et. al, NIM A 

1045 (2023) 167540



● Gas breakdown occurs in all the three detectors, with or without resistive components.

○ May evolve into a capacitor discharge if the streamer can connect electrodes at different potentials.

○ Readout isolation using resistive layer helps to protect it.

● Their appearance inside an RPWELL reduces its gain (not observed for a single discharge).

○ Increases with rate.

○ Decreases with distance.

○ Increases with resistance of the used RP.

● Recovery time ~ 1 min ± 5 s. Does not seem to depend on the distance.

○ Yet to understand.

● The gain drop vanished when we used a segmented resistive plate.

● No gain drop was observed in THWELL, the non-resistive variant.

● Simulation in progress.

Summary
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Thank you



BACKUP



● Gas mixture: Ne/5%CH4.

● Source: Cu-target X-ray generator (E𝛾=8.04 keV) with 0.5 mm collimation. Event rate ~ 25 Hz.

● Standard readout chain: anode → Charge-sensitive preamplifier (CSP) → Spectroscopic amplifier (2 𝜇s

shaping time) → Multi-channel analyzer (ADC).

● HV filter: R = 10 MΩ, C = 10 nF.

Gain measurement: Experimental setup
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Experimental setup for the basic characterization.
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A typical CSP pulse from anode.



● Effective gain = peak position of calibrated MCA spectrum/primary charge (= 229 e- from HEED [1]).

● Lower effective gain in RWELL due to presence of 0.9 mm FR4 (lower weighting field) [2].

● In RPWELL, the presence of the resistive plate does not affect the effective gain (same observation at [3]).

○ Gain decreases at higher source rate (in backup).

● Maximum achievable gain ~ 9500 (THWELL), 1.5✕104 (RWELL), 2.5✕104 (RPWELL).

Spectra and gain curves

22MCA spectra of the detectors. Effective gain vs applied bias across THGEM.

[1] I.B. Smirnov, Nucl. Instr. Meth. A, 554 (2005) 474.

[2] W. Shockley, J. Appl. Phys. 9 (1938) 635.

S. Ramo, Proc. IRE 27 (1939) 584.

[3] A. Rubin et al., JINST 8 (2013) P11004.

FR4 thickness = 0.9 mm, 0.2 mm



● RPWELL was reported as discharge free in the past [3-6].

● Observations in RPWELL around its maximum allowed voltage:

○ A sub-nA to a few nA current fluctuation from the WELL-top, on the power-supply screen.

○ Saturation of CSP pulses giving rise to saturated events in MCA.

■ Frequency increases with voltage.

● CSP measurements provide limited information.

A closer look at RPWELL
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Saturation of RPWELL MCA spectra around its maximum achievable gain.

[3] A. Rubin et al., JINST 8 (2013) P11004.

[4] L. Moleri et. al, Nucl. Instr. Meth. A 845 (2017) 262.

[5] S. Bressler et. al, JINST 11 (2016) P01005.

[6] S. Bressler et. al, JINST 8 (2013) C12012.



● Replacing the standard readout chain:

○ Anode → Timing-filter amplifier (TFA) → Oscilloscope.

■ TFA (ORTEC 474): integration time = 10 ns, differentiation time = 150 𝜇s, variable

amplification. ±1 V input and ±5 V output ranges.

● Reproduction of raw detector pulses with a minimum shaping.

Discharge id from pulses: experimental setup

24Experimental setup for discharge identification by pulse monitoring. Response of TFA to a fast pulse.

Input pulse to TFA

Output of TFA

X scale: 20 ns/div



● Amplitude ~ few mV, corresponding to a charge of hundreds of fC.

● Signal shape (correlated with the CSP pulse shape):

○ ~50 ns falling edge due to electron motion.

○ Hundreds of ns tail due to ion motion.

● In RWELL, an additional slow-rising pulse was measured on the

resistive layer due to the evacuating charges.

Avalanche-like pulses
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RPWELL 

RWELL 

THWELL
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Integrated pulse after CSP.



● THWELL: saturation of TFA.

● RWELL & RPWELL: large pulses (hundreds of mV) appear on anode.

● RWELL: large pulses correlated with current spikes from WELL-top and resistive layer.

● RPWELL: large pulses correlated with the sub-nA fluctuation on the current supplied to WELL-top.

○ Not always, due to limited resolution of the power supply.

Discharge-like pulses
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RPWELL 

RWELL 



● Recording of avalanche-like and discharge-like pulses.

● Pulse height calibrated to charge [7].

● A combined distribution of those charges.

● Maximum avalanche size ~ a few 106 e-, similar to the Raether limit reported for MPGDs.

● Average induced charge due to a discharge is minimum 2 orders of magnitude higher than that due to

avalanche.

A critical charge limit
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RPWELL 

(800 V)

[7] L. Moleri et al., JINST 17 (2022) P02037.

RWELL 

(810 V)

Maximum avalanche 

size

Variation of critical charge limit with applied voltage.



● Field comparison for 0.8 mm thick THGEM foil (0.5 

mm diameter holes with 0.1 mm wide rim) for 1000 V 

across it.

● The peak field value is higher in THWELL than in 

THGEM. THWELL field varies rapidly with thickness.

Electric field comparison
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Electric field variation along the thickness of the multipliers.
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