Discharges and their effect in WELL detectors with and without resistive anodes

Based on: *JINST 17 (2022) P11004 NIM A 1045 (2023) 167540*

Abhik Jash, Luca Moleri, Shikma Bressler

MPGD 2022, Weizmann Institute of Science, December 11-16, 2022

OUTLINE

- WELL detectors & discharges
- Effect of discharges on RPWELL gain

OUTLINE

● **WELL detectors & discharges**

● Effect of discharges on RPWELL gain

Thick-GEM and WELL detectors

- A Thick-GEM (THGEM) is about 10-fold larger than a Gas Electron Multiplier (GEM).
	- \circ Thickness ~0.5 mm, hole diameter ~0.5 mm (0.1 mm rim), 1 mm pitch.
- **Thick-GEM configuration:** A double-faced THGEM electrode assembled with an induction gap.
- **WELL configuration:** A single-faced THGEM electrode coupled to the readout plane. No induction gap.
	- Primary ionization in the drift gap. Charge multiplication inside the holes.

Tested configurations

● **THWELL:** THGEM electrode directly coupled to a readout anode.

- **RWELL**: THGEM electrode coupled to anode through a resistive layer providing lateral charge evacuation.
	- \circ Graphite sprayed on 0.9 mm FR4. Surface resistivity = 16 MΩ/ \Box . One edge connected to ground.
- **RPWELL**: THGEM coupled to anode via a resistive material. Charge evacuation via the bulk.
	- 0.7 mm thick LRS glass (*ρ*=2×10¹⁰ Ωcm) conductively attaches the anode and THGEM foil.

Discharge id through current measurement

Ref: *A. Jash et. al, JINST 17 (2022) P11004*

- 300 - Well-to Well-top $-$ Well-ton $-$ Cathode **THWELL** $Cathode$ 250⊧ 250 250 Cathode - Anode - Anode 200 200 $200E$ (745 V) Anode 150 $150₁$ 150 rent (nA) Current (nA)
 $\frac{1}{10}$
 $\frac{1}{10}$ Current (nA) $100⁵$ $100E$ 50 50 ā -50 RWELL RPWELL -100 -100 -100 (810 V) (900 V) -150 -150 -150 $\frac{1}{50}$ 100 150 $-200⁵$ -200^\pm $-200⁵$ 150 100 100 150 200 250 Time (s) $Time(s)$ Time (s) Monitored currents supplied to the electrodes in the investigated detector configurations.
- The currents supplied to the electrodes are monitored.

- In presence of a discharge: sudden change in current between a pair of electrodes. Polarity of the spikes indicate direction of current flow.
	- **THWELL**: intense (~200 nA) discharges between WELL-top and anode.
	- **RWELL**: quenched (~40 nA) discharges between WELL-top and graphite layer.
- **RPWELL:** no current fluctuation visible (instrument resolution $= 5$ nA).

Discharge id through pulse monitoring

Ref: *A. Jash et. al, JINST 17 (2022) P11004*

- Anode pulses recorded on oscilloscope after a Timing Filter amplifier.
	- \circ Int. time = 10 ns, diff. time = 150 µs : minimum pulse shaping.
- **THWELL:** saturated pulses.
- **RWELL**: large pulses (~3 orders of magnitude larger than avalanche case) appear on anode, correlated with the current spikes from the WELL-top and graphite layer.
- **RPWELL**: large pulses correlated with sub-nA current fluctuation on WELL-top.

Induced pulses on RPWELL anode after Timing filter amplifier.

Discharge id through pulse monitoring

Ref: *A. Jash et. al, JINST 17 (2022) P11004*

- Pulse height calibrated to charge.
- The endpoint of avalanche charge distribution corresponds to a few 10⁶ electrons.
- In RWELL, the discharge intensity from induced anode pulses is 100 times lower than that from WELL-top current spikes.
	- Two different mechanisms.
- Discharge intensity from RWELL and RPWELL anode pulses are similar, indicating same origin.

RPWELL anode in avalanche and discharge modes.

across WELL and the corresponding avalanche charge

The discharge phenomenon

- Stage 1: avalanche size crossing the Raether limit (few 10 6 e-) breaks down the gaseous medium.
- Stage 2: streamer propagation inducing **~few 100 pC** charge on anode.
	- Visible only in resistive configurations.
- Stage 3: streamers connect nearby electrodes at different potential.
	- Discharge of the involved capacitor.
		- Large current flow in THWELL, RWELL.
- Suppressed in RPWELL. Avalanche size > Raether limit Streamer propagation Hundreds of fC induced signal on anode. Electron avalanche Hundreds of pC induced signal on anode. Gas breakdown Current flow between the short electrodes. Conductive paths

9

OUTLINE

- WELL detectors & discharges
- **Effect of discharges on RPWELL gain**

Effect of discharges (gas breakdown) on RPWELL gain

● **RPWELL**:

- \circ Effective gain > 10⁴ for 8.04 keV X-ray.
- Readout protection. No capacitor discharge.
- Lower probability for gas breakdown.
- **Goal:** find effect of gas breakdown on RPWELL gain.
	- as a function of distance, time, detector properties.
- **Challenges:** discharges occur randomly in time, space.
	- produce discharges at a known, localized region, at a known time.
- **Solution:** forced gas breakdown at one region by producing a charge greater than Raether limit.

11

Experimental setup

- A pre-amplification stage to insert large charge locally
	- a localized charge injector (LCI) with open row of holes coinciding with the position of a readout strip, R_{0} (the intended discharge location).
	- \circ A low-rate X-ray source, X_{ICI} (Fe⁵⁵) controlled by a shutter, positioned to irradiate from one side.
- RPWELL biased to operate near discharge regime for a high rate X-ray source, X_{WEL} (Cu-target X-ray tube, 0.5 mm collimation).

Experimental setup (not to scale): shutter OFF

Methodology

- Opening the shutter produces gas breakdown inside the WELL hole on top of R_0 :
	- \circ X_{LCI} creates primary ionization in the top gap. Charge, Q_{LCI} enters the LCI hole.
	- \circ Charge multiplication in LCI. Gain (G_{LCI}) decided by ΔV_{LCL} .
	- \circ When total charge ($Q_{\text{LCI}} \times G_{\text{LCI}} \times G_{\text{WELL}}$) crosses the Raether limit, gas breaks down.
		- \blacksquare Identified as larges pulses from R_{0} .

Methodology

- Find the effect of discharges on the RPWELL gain by monitoring the charge spectrum produced by $X_{W \vdash 1}$.
	- \circ Change $X_{W_{\text{E1}}}$ position to quantify the effect as a function of distance.
- Detector gain calculated from Gaussian fit of the photopeak.
- Production of multiple discharges reduces RPWELL gain at regions away from R_0 .

Result

- A single discharge has no effect on the gain.
- To see an effect we need multiple discharges over a short period.
	- Shutter kept ON for different durations.
- Amount of gain drop increases with the duration of discharge period (shutter ON).
- **•** Gain drop increases with ΔV_{LCI} (higher discharge rate).

Result

Ref: *A. Jash et. al, NIM A 1045 (2023) 167540*

- Repeated spectra acquisition (acq. time $= 5$ sec) from RPWELL in a cycle of discharge OFF and ON:
	- Different durations of discharge period.
	- Discharge production: 6 mm away.

Gain variation in a cycle of discharges OFF and ON.

- Gain drop occurs within acquisition time (~ **5 seconds**).
- The recovery time is about **1 minute**.
	- \circ Longer than anticipated from simple R-C calculation for the RP (\sim 10 ms).

Zoomed area showing the fall and recovery times.

Result

Ref: *A. Jash et. al, NIM A 1045 (2023) 167540*

- Gain drop decreases with distance from discharge production point.
	- Effect present throughout the area of the investigated detector (1.5 cm).
- It increases with resistance of the used RP.

Relative gain drop vs distance from discharge production point for different resistive plates.

Summary

- Gas breakdown occurs in all the three detectors, with or without resistive components.
	- May evolve into a capacitor discharge if the streamer can connect electrodes at different potentials.
	- Readout isolation using resistive layer helps to protect it.
- Their appearance inside an RPWELL reduces its gain (not observed for a single discharge).
	- Increases with rate.
	- Decreases with distance.
	- Increases with resistance of the used RP.
- **•** Recovery time \sim 1 min \pm 5 s. Does not seem to depend on the distance.
	- Yet to understand.
- The **gain drop vanished** when we used a **segmented** resistive plate.
- **No gain drop** was observed in THWELL, the **non-resistive** variant.
- Simulation in progress.

Thank you

Gain measurement: Experimental setup

- **Gas mixture: Ne/5%CH₄.**
- **Source**: Cu-target X-ray generator ($E_y=8.04$ keV) with 0.5 mm collimation. Event rate \sim 25 Hz.
- Standard readout chain: anode \rightarrow Charge-sensitive preamplifier (CSP) \rightarrow Spectroscopic amplifier (2 μ s shaping time) \rightarrow Multi-channel analyzer (ADC).

A typical CSP pulse from anode.

Spectra and gain curves

- Effective gain = peak position of calibrated MCA spectrum/primary charge $(= 229 \text{ e}^{-1})$ from HEED [1]).
- Lower effective gain in RWELL due to presence of 0.9 mm FR4 (lower weighting field) $[2]$.
- In RPWELL, the presence of the resistive plate does not affect the effective gain (same observation at [3]).
	- Gain decreases at higher source rate (in backup).
- Maximum achievable gain ~ 9500 (THWELL), 1.5×10^4 (RWELL), 2.5×10^4 (RPWELL).

A closer look at RPWELL

- RPWELL was reported as discharge free in the past $[3-6]$.
- Observations in RPWELL around its maximum allowed voltage:
	- A sub-nA to a few nA current fluctuation from the WELL-top, on the power-supply screen.
	- Saturation of CSP pulses giving rise to saturated events in MCA.
		- Frequency increases with voltage.
- CSP measurements provide limited information.

[3] A. Rubin et al., JINST 8 (2013) P11004.

[4] L. Moleri et. al, Nucl. Instr. Meth. A 845 (2017) 262.

[5] S. Bressler et. al, JINST 11 (2016) P01005.

[6] S. Bressler et. al, JINST 8 (2013) C12012.

Discharge id from pulses: experimental setup

- Replacing the standard readout chain:
	- \circ Anode \rightarrow Timing-filter amplifier (TFA) \rightarrow Oscilloscope.
		- **■** TFA (ORTEC 474): integration time = 10 ns, differentiation time = 150 μ s, variable amplification. ± 1 V input and ± 5 V output ranges.
- Reproduction of raw detector pulses with a minimum shaping.

Experimental setup for discharge identification by pulse monitoring.

24 a a set of TFA to a fast pulse.

Avalanche-like pulses

- Amplitude \sim few mV, corresponding to a charge of hundreds of fC.
- Signal shape (correlated with the CSP pulse shape):
	- ~50 ns falling edge due to electron motion.
	- Hundreds of ns tail due to ion motion.
- In RWELL, an additional slow-rising pulse was measured on the resistive layer due to the evacuating charges.

Integrated pulse after CSP.

Discharge-like pulses

- THWELL: saturation of TFA.
- RWELL & RPWELL: large pulses (hundreds of mV) appear on anode.
- RWELL: **large pulses correlated with current spikes** from WELL-top and resistive layer.
- RPWELL: large pulses correlated with the sub-nA fluctuation on the current supplied to WELL-top.
	- Not always, due to limited resolution of the power supply.

A critical charge limit

- Recording of avalanche-like and discharge-like pulses.
- Pulse height calibrated to charge [7].
- A combined distribution of those charges.
- Maximum avalanche size ~ a few 10⁶ e⁻, similar to the Raether limit reported for MPGDs.
- Average induced charge due to a discharge is **minimum 2 orders of magnitude higher** than that due to avalanche.

Variation of critical charge limit with applied voltage.

[7] L. Moleri et al., JINST 17 (2022) P02037.

Electric field comparison

- Field comparison for 0.8 mm thick THGEM foil (0.5 mm diameter holes with 0.1 mm wide rim) for 1000 V across it.
- The peak field value is higher in THWELL than in THGEM. THWELL field varies rapidly with thickness.

Electric field variation along the thickness of the multipliers.