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1. Overview

Many types of detectors, such as cathode strip chambers and some MPGDs, allow us to reconstruct track positions by in-
duced strip charges. There are two main types of algebraic methods for this reconstruction: center of gravity methods and
little known differential methods. In the differential methods the track coordinate is a ratio of linear combinations of strip
charges with parameters constrained by considerations of symmetry and continuity. The resulting formulas are elegant and
effective. They do not depend on the common pedestal. Only special cases of these formulas can be found in the literature,
usually under different names. In this work general differential formulas are derived and tested. In order to compare them
with alternative approaches, center of gravity methods are also considered and improved. One of the new center of gravity
methods is almost free from systematic errors and has nearly perfect statistical resolution. The other studied methods need
corrections of systematic shifts to obtain perfect results. Algebraic methods may always be useful, and they are the only
choice for very high rate experiments, for which the Maximum Likelihood Estimate (MLE) of coordinates with the strip re-
sponse function takes too much computer time.

2. Center Of Gravity (COG)

Example of strip detector:
cathode strip chamber:
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In the case of MPGD there
are some analogue of anode
(conducting strips or resis-
tive surface), sensitive strips
below it and resistive or di-
electric layers between them.
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Simple center of gravity [1]:

xer =

j+n−1∑
i=j

(xs,i − xgc)qi

j+n−1∑
i=j

qi

qi is the charge on the ith strip, xs,i is
the ith strip center (usually i + 0.5) xer
is the “Estimate Relative” to xgc. The
final estimate is xe = xgc + xer.
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q − Systematic shifts
(systematic errors).

− Discontinuous.
− Depends on the common

pedestal.
− Parameters for optimization

are absent.

3. Center Of Gravity with Bias level (COGB) and with
Power (COGBP)

Center Of Gravity with subtraction of the Bias level (COGB):

xer =

j+n−1∑
i=j

(xs,i − xgc) max{0, qi − B}
/j+n−1∑

i=j

max{0, qi − B},

the bias level B = α
∑

i=1,n qi , α is a small non-negative constant
[2,3].
− Systematic shifts.
+ Continuous, if qj−1 < d and qj+n < d .
− Depends on the common pedestal.
+ One free parameter for optimization.

− Many “local” minima of precision with almost identical
precision but with different systematic shifts.
(Local minima are also inherent to all the other meth-
ods with adjustable parameters.)

Better performance, if to rise max{0, qi − B} to a power p. This
gives a second adjustable parameter (there is no privileged value
of p). Let us call it the Center Of Gravity with Bias level and
with Power, COGBP.

4. Center of Gravity with floating cluster, Weight
function(COGW) and with Splines(COGWS)

The charge is multiplied by a modulating or weight function
w(x), such that w(x) ⩾ 0, w(x) = w(−x), w(x) = 0 for x > t,
where t halfwidth. The generalized center of gravity:

R(x) =

j+n−1∑
i=j

qi
i+1∫
i

w(z − x)zdz

j+n−1∑
i=j

qi
i+1∫
i

w(z − x)dz

The estimate of the coordinate xe is given by the equation:

xe = R(xe). (1)

Iterative solution: at (k + 1)th iteration x
(k+1)
e = R(x

(k)
e ).

Non-iterative algebraic solution exists for w(x) expressed by poly-
nomials of the order not higher than two. Numerical tests show
that w(x) expressed by a constant in the interval [−t, t], or by a
linear function in the same interval, or by a single square polyno-
mial function does not produce perfect results.
Good choice of w is a quadratic spline with continuous first
derivative. Fitted parameters are coordinates of breaking points
(“knots”). The resulting quartic equation is very complex, but
can be solved “by radicals”. Of the four solutions, one useful
solution can be chosen. Let us call it the Center Of Gravity with
Weight function with Splines, COGWS.

+ Systematic shifts can probably be reduced to a negligi-
ble level and the statistical resolution can be made the
best possible by optimizing free parameters.

+ Continuous.
+ Solutions do not depend on the common pedestal.

− Large complexity and large calculation time
(but ≪ the time of MLE).

5. Differential methods (ADF, SDF, ADFBP), 6 strips

Let xer =
n∑

i=1
aiqi

/ n∑
i=1

biqi with any parameters ai and bi and n = 6 (for brevity,

here we suppose that j = 1). Assume that the maximal charge is q4 and
q4 ⩾ q3 ⩾ q5 (the track is most likely between (xs,3 + xs,4)/2 and xs,4). Then, xer
should be zero, if q1 = q6, q2 = q5, q3 = q4 (condition of symmetry), and 0.5, if
q2 = q6, q3 = q5 (condition of continuity). Then,

xer =
a1d16 + a2d25 + a3d34

2a1d12 + 2a2d23 + 2a3d34 + b5d53 + b6d62
, dij = qi − qj ,

a1 ⩽ 0, a2 ⩽ 0, a3 < 0, b5 < −2a2, b6 ⩽ −2a1

Constraints are sufficient to have non-zero denominator at
q1 ⩽ q6 ⩽ q2 ⩽ q5 ⩽ q3 ⩽ q4 ∧ (q3 ̸= q4 ∨ q3 ̸= q5).
If the maximal charge is q3 and q3 ⩾ q4 ⩾ q2 (the track is most likely between
xs,3 and (xs,3+ xs,4)/2), it needs to swap q1 ↔ q6, q2 ↔ q5, q3 ↔ q4, to calculate
xer and to change its sign. Let us call it Asymmetric Differential Formula, ADF.
Symmetric Differential Formula, SDF, does not require permutations:

xer =
1

2

a1d16 + a2d25 + (a2 − a1)d34
a1s16 + (a2 − 2a1)s25 + (a1 − a2)s34

, sij = qi + qj , a1 ⩽ 0, a2 < a1

Both ADF and SDF can be used with the bias and power (notation with suffix
BP): qi → (max{0, qi − B})p. α and p are additional adjustable parameters
(there is no privileged value of p). At a1 = 0 and b6 = 0 these formulas are
converted in 4-strip formulas. The symmetric 4-strip formula
xer = 0.5(−q1 − q2 + q3 + q4)/(−q1 + q2 + q3 − q4) is proposed in Ref. [4].
The asymmetric 4-strip formula (never proposed):
xer = (a1(q1 − q4) + a2(q2 − q3))/(2a1q1 + (2(a2 − a1)− b4)q2 − 2a2q3 + b4q4).

6. Differential methods (ADF, RADF, SDF, ADFBP), 7 strips

The asymmetric formula (q4 is maximum and q4 ⩾ q5 ⩾ q3):

xer =
a1d17 + a2d26 + a3d35

2a1d12 + 2a2d23 + 2a3d34 + b5d54 + b6d63 + b7d72
,

a1 ⩽ 0, a2 ⩽ 0, a3 < 0, b5 < −2a3, b6 ⩽ −2a2, b7 ⩽ −2a1

If q3 > q5, permute q1 ↔ q7, q2 ↔ q6, q3 ↔ q5, calculate xer and change the
sign. The symmetric formula:

xer =
1

2

a1d17 + a2d26 + a3d35
a1s17 + (a2 − 2a1)s26 + (2a1 − 2a2 + a3)s35 + 2(−a1 + a2 − a3)q4

,

a1 ⩽ 0, a2 ⩽ a1, a3 < a2 − a1.

If a1 = b7 = 0, these formulas are converted into 5-strip formulas.
If a1 = a2 = b6 = b7 = 0, then 3-strip formulas are obtained.
If b3 = 0, the asymmetric 3-strip formula is “the ratio method”:
r = 0.5(Qmid − Qmin)/(Qmax − Qmin). from Ref. [5]. The full asymmetric 3-strip
formula (never proposed): xer = a1(q1 − q3)/(2a1q1 − (2a1 + b3)q2 + b3q3).
The symmetric 3-strip formula xer = 0.5(−q1 + q3)/(−q1 + 2q2 − q3) is also an
algebraic fit of the parabolic strip response function [6].
An intermediate 7-strip formula, Restricted Asymmetric Differential Formula,
RADF, can also be useful, if to fix some bi (one or two) at their values for the
symmetric case, for example: b7 = 2a1, b6 = −4a1 + 2a2. Then, one can fit b5
together with a2 and a3 (a3 can be assumed to be equal to -1).
General asymmetric formula:
∀n ⩾ 3, m is the whole part of
n/2, l = m + 1, j = 1:

xer =

m∑
i=1

aidi ,n−i+1

2
m∑
i=1

aidi ,i+1 +
n∑

i=m+2
bidi ,n−i+2

,

− Systematic shifts.
+ Continuous.

+ Independent on the common pedestal
(if used without bias and power).

+ Many parameters for optimization.

If n is odd, al−1 < 0, bl+1 < −2al−1, ∀i ∈ [2; n − l ], al−i ⩽ 0, bl+i ⩽ −2al−i ; for
ql ⩾ ql+1 ⩾ ql−1 ⩾ ql+2... ⩾ q1 and ql > ql−1. If n is even, al−1 < 0,
bl+1 < −2al−2, ∀i ∈ [2; n − l ], al−i ⩽ 0, bl+i ⩽ −2al−i−1, a1 ⩽ 0; for
ql ⩾ ql−1 ⩾ ql+1 ⩾ ql−2... ⩾ q1 and ql > ql+1.

7. Fitting parameters

Suppose, a “true” coordinate xt is known (in simulations or in a test experiment).

Minimization of the “standard” sample variance: S(xe) =
1
Ne

Ne∑
i=1

(xe,i − xt,i)
2 for Ne

events can ignore “local” minima with almost the best total resolution, but with
much better systematic shifts. Good minimum is found by the minimization of a

generalized Sβ(xe) =
1
Ne

Ne∑
i=1

(xe,i − xt,i)
2 + βY , β is a small constant, and Y is

an estimate of systematic shifts or an estimate of deflection of the spatial dis-
tribution (fluctuations of the occupancy). The latter is used in tests. If nh,i
is the number of events in i -th bin of the histogram of xer with Nh bins, and

n
(s)
h,i = (nh,i + nh,Nh+1−i)/2, then

Y =
Nh

Ne

(
max{0, σ(n(s)h )− E [σ(n

(s)
h )]}

)2

E 2[σ(n
(s)
h )]

, σ(n
(s)
h ) =

√√√√ 1

Nh

Nh∑
i=1

(
n
(s)
h,i −

Ne

Nh

)2

.

8. Correction of systematic shifts, smoothing

Fourier series [7] or polynomial [8] correction is possible. An alternative approach
is smoothing the measured spatial distributions. Let us suppose a true coordinate
distribution is uniform. Let xer ∈ [xer,min, xer,min + 1[, where xer,min is either −0.5

or 0. Recovery of uniformity: xer,corr =
∫ xer,min+1
xer,min

p(xer)dxer − xer,min, where p(xer)

is probability density of xer [9,10]. Let us call it integrated smoothing or just
smoothing. It is applied with minimization of S(xe,corr) (without βY ).

9. Numerical testing, charge distribution function

A well known function describing the change distribution in cathode strip
chambers [11,12,13] was used for numerical tests. The plots presented
below are computed for K3 = 0.5 and for strip width equal to the anode-
cathode gap.
Some white noise (0.008 of the full cathode charge) was added to the
charge of each strip in order to make the resolution similar to the typical
experimental resolution of such chambers.

10. Numerical testing, resolution and shifts

Figure: The statistical resolution (RMS) and systematic shifts (the “mean shifts”, that is
averages (xe − xt)), as a functions of the true relative (to the center of its strip) coordi-
nate xtr.

COGB: Center of Gravity with Bias;
COGBP: Center of Gravity with Bias and Power;
COGWS: Center of Gravity with Weights and quadratic Splines;
ADF: Asymmetric Differential Formula;
RADF: Restricted Asymmetric Differential Formula;
ADFBP: Asymmetric Differential Formula with Bias and Power;
MLE with 7 strips: Maximum Likelihood Estimation with charge distribu-
tion.

11. Numerical testing, spatial distribution

Figure: Measured spatial distributions (occupancy histograms) for the uniform irradiation
for all methods given in the previous figure.

12. Features of methods

notation simplicity continuity independence accuracy
of method on common

pedestal
COG yes no no bad
COGB yes yes no moderate
COGBP yes yes no good
COGWS no yes yes very good
COGBP with
smoothing yes yes no very good

MLE no yes yes very good
ADF(RADF, SDF) yes yes yes moderate
ADFBP yes yes no good
ADF(RADF, SDF)

with smoothing yes yes yes very good

13. Conclusions

A range of new differential methods and center of gravity
methods is developed (in particular, denoted by SDF, ADF,
RADF, ADFBP, COGBP, COGWS).

Several methods of both classes, when applied with the in-
tegrated smoothing, and the COGWS method (the center of
gravity method for which the smoothing is unnecessary) provide
almost zero systematic shifts and the resolution which is very
close to the best resolution attainable by MLE.

Several methods of both classes (SDF, ADF, RADF, COGWS)
ensure the independence of the results on the common
pedestal.
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