

Artist's impression of classical nova.

Main nuclear flow in terms of reaction fluxes at peak temperature, for a nova explosion [1].

X-ray bursts

 ${}^{15}O(\alpha,\gamma){}^{19}Ne$ is one of the two routes to break-out the Hot CNO cycle and trigger the rp-process, which produces elements up to A=100.

Phase I - calorimetry

Nucleosynthesis in novae proceeds mainly via resonant radiative proton captures and β decays. ${}^{30}P(p,\gamma){}^{31}S$ is a potential bottleneck for nucleosynthesis in novae ($T_{1/2} = 2.5 \text{ min}$)

Novae are possible origin of pre-solar grains (unusual ³⁰Si/²⁸Si ratios)

time (sec) Variation of the light emission curve of type I x-ray burst a using the upper and lower limit of the ¹⁵O(α,γ)¹⁹Ne reaction rate

Credit for the Nova Nucleosynthesis calculation: J. Jose et al. Credit for presolar grain picture: S. Amari. Credit for the X-ray burst light curve: R. Cyburt

GADGET - a Gaseous Detector with Germanium Tagging

M. Friedman, for the GADGET collaboration The Hebrew University of Jerusalem, Racah Institute of Physics, Jerusalem 9190401 Israel

Experimental Technique

Challenges

Resonance energies are close to the proton separation energy (S_p) , therefore kinetic energies are very low and they overlap with the beta background in solid state detectors. In 8 10 addition, proton emission competes with gamma decay, and thus sometimes has a very low probability due to Coulomb and centrifugal barriers.

Energy (keV) β-delayed proton spectrum for ²³Al measured with a silicon detector. Energy deposition from β particles sums with every proton event and also produces a strong background at low energies. The spectrum is compared to ²²Mg β decay properly normalized [2].

Resonant proton studied indirectly by β -delayed particle emission

Detector requirements

- \blacktriangleright Ability to detect β -delayed protons and α -particles with kinetic energies as low as possible.
- ➢ High detection efficiency.
- Energy resolution below 8% FWHM at low energies. > Ability to distinguish β -p and β -p- γ .
- ➤ No beta-background above 200 keV.

The detector has to fit inside the SeGA germanium array, which is ~18 cm diameter

The detector uses MICROMEGAS as the amplification system [3]. Electrons produced by ionization in the gas drift in a uniform electric field toward the amplification region, where a very strong electric field produces an avalanche multiplication.

The 7th International Conference on Micro Pattern Gaseous Detectors 2022, Weizmann Institute of Science

0.35 0.3 0.4

CONTACT INFORMATION: email: moshe.friedman@mail.huji.ac.il

Phase II – Time Projection Chamber

Candidate ²¹Mg(βpα) decay chain event from a calibration beam, taken at FRIB during Nov 2022 run.

- \geq ²²Na(p, γ) rate in nova substantial reduction of resonance strength. (M. Friedman et al. PRC 2020).
- > ³⁰P(p, γ) rate in nova first experimental detection of the relevant resonance (T. Budner et al. PRL 2022).
- Recent (Nov 2022) run at FRIB with ²⁰Mg in TPC mode, candidate ${}^{21}Mg(\beta p\alpha)$ decay chain identified.

