The novel XYU-Readout for ambiguity-reduced tracking

7th International Conference on Micro Pattern Gaseous Detectors, Dec 11th - Dec 16th, 2022 at the Weizmann Institute of Science, Rehovot, Israel

Reducing ambiguities for strip-readout

- In HEP we need high rate capabilities of tracking detectors and a way to cope with multiplicities
- Removing ambiguities within one detector becomes crucial when one can not use multiple detectors behind each other to resolve them. One example would be RICH detectors. Due to the Cherenkov-rings, one obtains multiple hits at the same time. In addition, because the signals are originated from photons, one can
- Within limits, this can also be obtained by improving time resolution and/or additional information about signal amplitude. Solutions for this problem can be found at detector level^{8,9}, regardless of used electronics. One can use pixilated readout, this causes a huge increase in quantity of channels and does not scale well. Therefore, the XYU-R/O was proposed as a three coordinate strip-readout.

Position reconstruction in MPGD using strip-readout

- To obtain the position information the induced signal of the amplified and diffused electron charge cloud¹ is used
- A geometrical resolution for the position can be given by (1). If multiple strips are included it is possible to use algorithms (e.g. COG (2)) to improve
- The third coordinate might be a possibility to further improve by combining the position informations (3)

XYU-GEM simulation and design

Parameter setsa)OptimizedManufactured

Combinations

X2/Y2,<mark>X2/Y4</mark>,

X4/Y2,X4/Y4

X2/Y2/U3,

X4/Y4/U7

Signal

X2,X4,Y2,Y4

X2,X4,Y2,Y4,

U3,U7

Simulation optimized parameters

Simulation manufactured parameters

- Simulations³ of the charge sharing have been performed to obtain the parameters for the first prototype, shown in d). The simulation was done using Garfield++ and COMSOL. However, Production limitations led to a set of manufactured parameters, which vary from the optimized set of the parameters (a). In (e) the simulation results for the manufactured parameter show a good agreement with the measurement.
- Naturally, the design does not require vias in the active area. This should help to ease production and upscaling. The manufacturing procedure was developed by CERN's Micro Pattern Technology (MPT) workshop⁴.
- The detector is based on the standard COMPASS-like triple-GEM detector⁵ using Ar/CO₂ (70/30)

Measurements with ⁵⁵Fe

The measurements where performed using the VMM3a ASIC with the RD51 Scalable Readout System (SRS)⁶

- The beam data has been taken during the RD51 October test-beam at SPS H4 beam-line with 150 GeV/c Muons
- The adc spectra, (f) and (i), show a similar distribution for all three coordinates. The lower charge collection of U is in agreement with laboratory and beam data. Due to the lower initial charge from MIPs, compared to ⁵⁵Fe, the detector gain for the beam measurements is a factor of three higher

Measurements with MIPs

nt

ADC spectrum Muon beam

Influence of irradiation

- During irradiation a change in the sharing between the three coordinates was observed
- The assumption: electrons get trapped at the insulator between the strips and thus change the electric field, resulting in a change of the charge collection

										S	ł	٦	2	}	ri		1	8	J		V	9			ia	31	ti	(C	n
0.4		Δ	Δ	Δ	N	<u>a</u>	2	2	3	۵	8	8	٤	2	₫.	2	3	2	8	۵	<u>.</u>		<u>8</u> .	2	<u>z</u> . (۵. ۵	Ā	8		۵
	- - c	•	٥	0	o	ō	0	0	0	٥	٥	Q	0	0	ō	0	ō	0	٥	0	0	0	ō	ō	0	0 0	٥	0	Q	٥
0.35	_ 																													
0.3																										x- y- u-	si si	tri tri tr	ip ip	s s s
0.25	_ 																													
0.2		¢ 	<u></u>	-@				® 1 1	\$	\$	\$	\$ }	\$	٩	۰	\$ 1	*	\$	\$	\$	¢	•	<u>،</u>	 @ 	\$	\$ \$	 @			÷

- Extracting the position of the photopeak and the 1.2
 MPV, the charge sharing can be determined. This leads to ~41/38/21 (X/Y/U) for the ⁵⁵Fe and ~39/36/25 for the beam measurements
- Calculating the charge ratio directly event by event, it can be seen a similar result. Comparing (g) and (j) the sharing in the beam seems to be moved closer together compared to the laboratory
- To further investigate the detector response, the FWHM for the cluster size of single events was extracted. In (h) and (k) U seems to be shifted to larger cluster sizes. A possible explanation would be that the fit is overestimating for smaller amplitudes
- Using the QR-code it is possible to see some event by event clusters for the different coordinates. Also here the lower amplitude for U can be seen

Time [s]

- As visible in (I), the effect is comparably small and an equilibrium can be observed within five minutes with low rate (~2.5 Hz/mm²)
- The charge is mainly shifted from the U layer to the X layer. The intermediate Y layer shows the smallest variation

Biasing coordinates

- Biasing the coordinates by applying a voltage on the strips can be used to tweak the charge collection. Equal charge sharing would be possible without exploiting production limitations
- As shown in (m), a significant change in the signal of the X coordinate can be achieved by biasing the U coordinate

High multiplicities

- To emulate high multiplicities, a larger time window was displayed to show nine events
- Correct positions are known (red marks) in this example
- With only two coordinates, it would be impossible to get reliable informations about the real hits
- With the third coordinate one can already resolve most of the ambiguities by simple correlation
- Still present ghosts might be resolved by more complex combination-algorithm, e.g. looping over the multiple possibilities and requiring to use up all signals

Conclusion and outlook

- A first prototype of the XYU-GEM was produced⁴ and measurements in the laboratory and with MIPs could be obtained⁷
- The simulation showed good proof with the manufactured parameters and could be used to predict better parameters
- Using the beam data the detector response with actual multi-hit events, caused by showers, is under investigation. As well as the possible influence of the third coordinate on the resolution
- Biasing one of the coordinates to influence the sharing should be further investigated to see the effect simultaneously on all coordinates
- Another aspect worth to investigate would be a different pitch. This can be done using an adapter to merge channels

K. Floethner, F. Brunbauer, S. Ferry, F. Garcia, D. Janssens, B. Ketzer, M. Lisowska, H. Muller, R. de Oliveira, E. Oliveri, G. Orlandini, D. Pfeiffer, L. Ropelewski, J. Samarati, F. Sauli, L. Scharenberg, M. van Stenis, A. Utrobicic, R. Veenhof

SPONSORED BY THE

karl.jonathan.floethner@cern.ch