

# Development of miniaturized circuit boards for GEM detectors onboard the CubeSat X-ray observatory NinjaSat





N. Ota<sup>1,2</sup>, T. Tamagawa<sup>2</sup>, T. Enoto<sup>3</sup>, T. Kitaguchi<sup>2</sup>, Y. Kato<sup>2</sup>, T. Mihara<sup>2</sup>, W. Iwakiri<sup>4</sup>, M. Numazawa<sup>5</sup>, Y. Zhou<sup>1,2</sup>, K. Uchiyama<sup>1,2</sup>, T. Takeda<sup>1,2</sup>, Y. Yoshida<sup>1,2</sup>, S. Hayashi<sup>1,2</sup>, A. Jujo<sup>1,2</sup>, S. Watanabe<sup>1,2</sup>, H. Sato<sup>1,6</sup>, C. P. Hu<sup>7</sup>, H. Takahashi<sup>8</sup>, H. Odaka<sup>9</sup>, T. Tamba<sup>9</sup>, K. Taniguchi<sup>10</sup>, S. Kodair<sup>11</sup>
 1 Tokyo Univ. of Science, 2 RIKEN, 3 Kyoto Univ., 4 Chuo Univ., 5 Tokyo Metropolitan Univ., 6 Shibaura Inst. of Tech., 7 National Changhua Univ. of Educ., 8 Hiroshima Univ.,9 The Univ. of Tokyo., 10 Waseda Univ., 11 National Institute for Quantum Science and Technology



#### NinjaSat (Enoto+20)

- 10×20×30 cm<sup>3</sup> size CubeSat X-ray observatory (Fig. 1)
- Scheduled to be launched in Oct. 2023
- Operation altitude: 550 km
- Observe X-ray transient from bright neutron stars or black holes
- Flexible observation in cooperation with ground-based and space station observatories



Fig.1 CG Image of NinjaSat



### Front End Card (FEC)

- Apply High Voltage (HV) to the Sensor (Fig.4,5)
  Applied Voltage to GEM: 590 V
- Analog signal processing (Fig.4,5)
  - 2 V dynamic range
  - Conversion gain: 20 mV/keV
  - Input-output linearity <2% @ 2–50 keV</li>
- Low power consumption of 130 mW





**Pre-amplifier** 

HV module

#### **Gas Multiplier Counter (GMC)**

- 10 cm cube X-ray detector (Fig. 2) ×2
- Observation band: 2–50 keV
- Achieved energy resolution: 25% (FWHM)
  @ 6 keV
- Sensor
- Generate charges by photoelectric effect
- Filled with Xe/Ar/DME (volume ratio: 75/24/1 @ 0°C, 1.2 atm)
- Equipped with single liquid crystal polymer Gas Electron Multiplier (Tamagawa+09) (Fig.3)

Fig.2 Appearance of GMC



Fig.3 Top and cross-section view of GEM



Fig.4 Function diagram of GMC

Fig.5 Appearance of FEC

8.8 cm

### Purpose of this study

Design and performance evaluation of FEC

- Noise suppression from a HV module
- Evaluation of discharge risk by heavy ions in space

## 2. Noise suppression

#### HV module

We selected the small size module UMHV0520 (HVM Technology, Inc.)



## 3. Evaluation of discharge risk

**Discharge by heavy ions and protection design** 

FEC must withstand discharges in GEM caused by heavy ions in space

X-ray Heavy ion



- Output up to 2 kV
- Oscillation frequency: 40 kHz

Fig.6 HV module UMHV 0520 (HVM Technology, Inc.)

The HV module is mounted near pre-amplifiers Noise amplitude  ${\sim}1$  V on the preamplifier output of the prototype FEC



30

(Fig.11).

We designed clamping diodes at the inputs of preamplifiers to prevent over-voltages

#### **Heavy ion irradiation test**

Verify tolerance of the circuit against discharges at Heavy Ion Medical Accelerator in Chiba (Fig.12).

Irradiated Ion: 500 MeV/u Fe
 Typically deposits ~10 MeV



Fig.11 Overview of GMC and protection against discharge using clamping diodes

- Generate  $\sim 10^5 10^6$  electrons in sensitive area
- Total Irradiation rate ~20 cps (total amount: 10<sup>4</sup> counts)
  > Fe ion (>500 MeV/n) rate to GMC in the orbit ~10<sup>-3</sup> –10<sup>-2</sup> cps
- Monitor <sup>55</sup>Fe 5.9 keV X-rays as a normal operating reference during irradiation  $= 24.1 \pm 1.0\%$





#### **Noise level**

Noise level < 5 mV (Fig.10) trigger threshold (1 keV) ~20 mV (@ GEM gain=400) **Noise is surpassed less than GMC trigger threshold (1 keV)** Fig.10 Noise level h



Fig.12 Set up of heavy ion irradiation test

GMC detected X-rays with a required energy resolution during irradiation (Fig.13)



Fig.13 <sup>55</sup>Fe 5.9 keV X-ray spectrum during beam irradiation

Withstand discharges and operated normally.

### 4. Conclusion

- The noise level of FEC was suppressed to less than the required specification of 1 keV trigger threshold.
- It was confirmed that FEC withstands discharges caused by heavy ions.

### <u>Reference</u>

- Enoto et al, 2020, Proc. SPIE 11444, 114441V
- Tamagawa et al, 2009, NIMA, 608, 390