DLC Surfaces for Photon Detection with THGEMs

¹T. Klemenz, ¹L. Fabbietti, ²P. Gasik, ¹R. Gernhäuser, ¹M. Rieder, ¹B. Ulukutlu ¹Technische Universität München, TUM School of Natural Sciences, Garching, Germany ²GSI/FAIR GmbH, Darmstadt, Germany MPGD 2022

Introduction
 Motivation: Build a scalable photon detector with MPGDs for visible light range Production and commissioning of a test chamber for measurements with different photocathode materials Measure Quantum Efficiency (QE) of different photocathode materials for various light ranges Use CsI photocathode for setup commissioning of a test chamber for measurements with different photocathode materials Measure Quantum Efficiency (QE) of different photocathode materials for various light ranges
Setup Reference studies with CsI photocathode
 Aluminum vessel with two operational modes Vacuum down to O(10⁻⁶ mbar) THGEM with gold surface THGEM with gold surface 500 μm thickness, 400 μm hole diameter, 800 μm hole pitch

- Flush with gas
- Deuterium lamp as a light source in VUV region
 - Narrow down the spectrum to mainly 161 nm with filter
- Aperture for illumination of a defined area
- PicoLogic pA-meter for current measurements [1]
- Currently operated with reflective photocathodes

- . . . Csl coating procedure at TUM \bullet
 - Electron evaporation technique
 - Typical thickness: 190 μg/cm²
 - GaP photo diode for QE reference
 - QE = 8% at 161 nm
 - Measure current on the photocathode
 - Ratio of photo diode and photocathode current equals ratio of QEs
 - Reached QE of 7% at 161 nm
 - In the expected range (O(10%)) [2]
 - New detector setup operational

"TUM DLC" – Laser Pulse Ablation Carbon

Production process

- Prepare carrier for DLC layer
 - Glass plate covered with betaine and 100 μ g/cm² copper
- Shoot pulsed Nd:YAG laser at graphite target in vacuum

DLC QE results **Preliminary results** $3 \,\mu g/cm^2$ **TUM DLC**

Different thicknesses of DLC layers studied

- Single atoms deposited on carrier in mixture of sp2 and sp3 hybridized carbon
- $sp3 \rightarrow$ diamond like structure

Deposition of carbon layer on a carrier for QE studies

- Au surface PCB for first studies
- Remove carrier materials to extract carbon layer
 - Immerse glass plate into water to dissolve betaine layer, then into nitric acid to dissolve copper
- Apply remaining carbon layer to the PCB

- $3 \,\mu g/cm^2 \rightarrow QE = (1.2 \pm 0.3) \times 10^{-5}$
- $4 \,\mu g/cm^2 \rightarrow QE = (1.3 \pm 0.3) \times 10^{-5}$
- $8 \,\mu g/cm^2 \rightarrow QE = (1.8 \pm 0.4) \times 10^{-5}$

DLC THGEM from CERN

- DLC produced in China [3]
- THGEM produced by CERN PCB workshop
- QE = $(5 \pm 2) \times 10^{-6}$

. 🦉 .

