

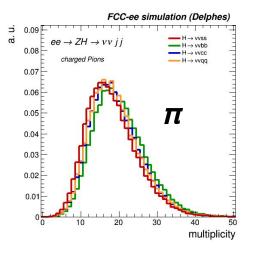
Timing for flavour tagging FCC-ee

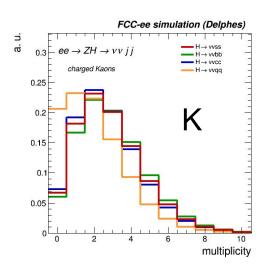
Michele Selvaggi, Franco Bedeschi Loukas Gouskos

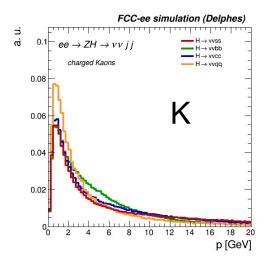
Nov 14th, 2022

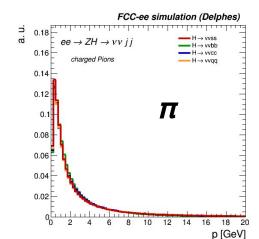
Basics of flavour tagging (strange)

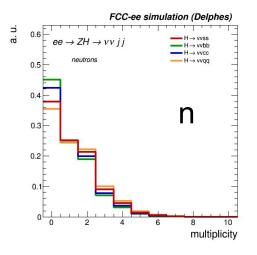
- Large Kaon content
 - Charged Kaon as track:
 - K/pi separation
 - TOF
 - dEdx/dNdx
 - Neutral Kaons:
 - $K_S \rightarrow \pi\pi$
 - Displaced 2 track
 vertex
 - 4 photons

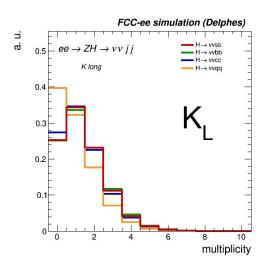

• TOF vs n ?

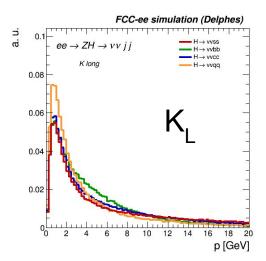

Detector constraints:

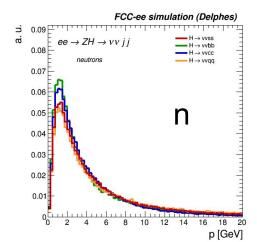

Need power pixel/tracking detectors

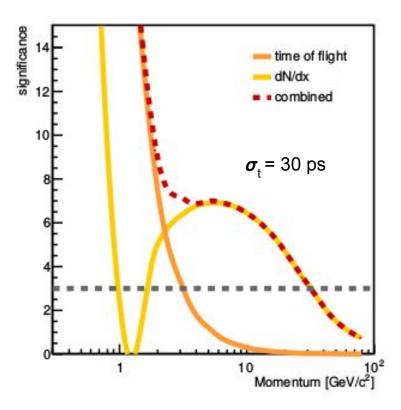

- good spatial resolution
- timing detectors
- charged energy loss (gas/silicon)





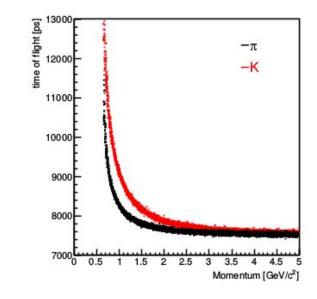






dN/dx (dE/dx) provides excellent PID for p > 2 GeV and p < 1 GeV

- blind spot 1 < p < 2 GeV can be covered by TOF
 - With 30 ps , 3σ for p < 3 GeV
 - With 3 ps , 3σ for p < 10 GeV


Michele Selvaggi

FCC Week - June 2021

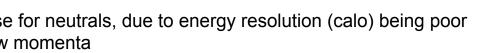
Time-of-flight (charged)

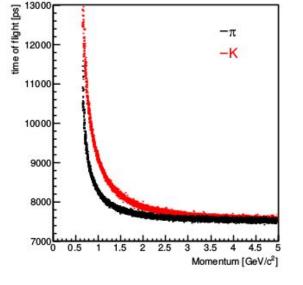
• Allows for good K/pi separation at low momenta:

$$t_{\rm flight} \equiv t_{\rm F} - t_{\rm V} = \frac{L}{\beta} = \frac{L\sqrt{p^2 + m^2}}{p} = \frac{LE}{\sqrt{E^2 - m^2}}$$

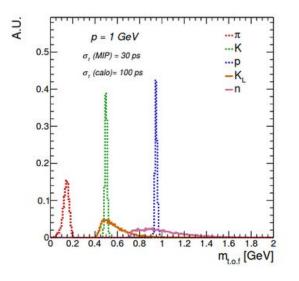
 $\sigma_{\rm t}$ = 30 ps

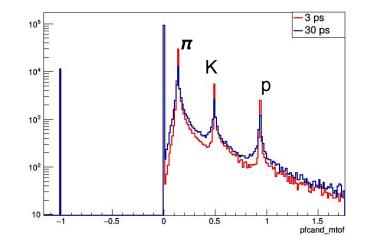
• Can in principle get charged and neutral separation :


$$m_{\text{t.o.f.}}^{(c)} = p \sqrt{(\frac{t_{\text{flight}}}{L})^2 - 1}$$
 $m_{\text{t.o.f.}}^{(n)} = E \sqrt{1 - (\frac{L}{t_{\text{flight}}})^2}$


Time-of-flight (charged)

Allows for good K/pi separation at low momenta:


$$t_{\rm flight} \equiv t_{\rm F} - t_{\rm V} = \frac{L}{\beta} = \frac{L\sqrt{p^2 + m^2}}{p} = \frac{LE}{\sqrt{E^2 - m^2}}$$

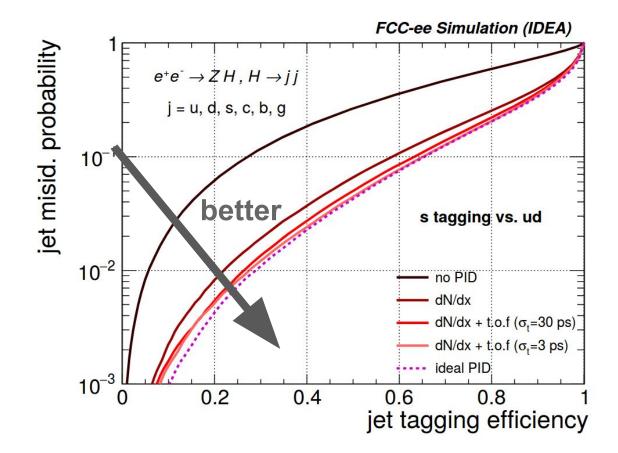

Worse for neutrals, due to energy resolution (calo) being poor at low momenta

- TOF requires knowledge of:
 - t_{calo} and t_{vtx} , path length (X_{calo} , X_{vtx}), momentum (tracks)/energy (neutrals)

 \rightarrow mtof

- t(final) will be measured with some timing layer at the entrance of the calorimeter
- t(initial) ? requires precise knowledge of the vertex timing
 - with dedicated timing layer
 - reduces tracker transparency and downstream perf of ele/photons ...
 - precise knowledge of event time will give a constraint of order bunch length

0	assuming	clock	from t	he mad	chine


Ebeam (GeV)	45.6	80	120	175	182.5
σ _x (μm)	6.4	13.0	13.7	36.6	38.2
σ _y (nm)	28.3	41.2	36.1	65.7	68. <mark>1</mark>
σ _z (mm)	12.1	6.0	5.3	2.62	2.54
Vertex σ_x (µm)	4.5	9.2	9.7	25.9	27.0
Vertex σ_y (nm)	20	29.2	25.5	46.5	48.2
Vertex o _z (mm)	0.30	0.60	0.64	1.26	1.27
Vertex ot (ps)	28.6	14.1	12.5	6.2	6.0

• σt ~ 30-15 ps

 can also be fitted using all low momentum tracks in the event assuming they originate from same vtx

assuming perfect knowledge of initial time...

assuming perfect knowledge of initial time...

- Timing can provide useful information for strange tagging
 - assuming initial time is known, 30 ps timing resolution seems to provide sufficient ID capabilities to fully exploit jet content

- To be understood:
 - How well can we measure initial time
 - how precise is event time (clock) given by the machine (for the constraint)
 - simultaneous fit of (tvtx, mass) implementation in 4D vertex fit needed
 - How much does neutral timing bring?

• Can we obtain similar PID perf at low momenta with other methods (e.g Cherenkov)