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HL-LHC orbit correctors
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▪ MCBXF are nested dipole H/V correctors, the closest ones to the 

interaction point:

▪ 150 mm single aperture, NbTi technology

▪ Two magnet lengths with the same cross section:

▪ Type A (2.5 m long): 1 prototype + 6 series (2 of them: spares)

▪ Type B (1.5 m long): 2 prototypes + 12 series (4 of them: spares)

▪ CIEMAT deliverable: “bare” magnets

▪ Powering tests done at CERN & FREIA

▪ Integration in cold mass at CERN MCBXFB ready to

test at SM18 

(CERN courtesy)



MCBXF Technical specifications

Magnet configuration
Combined dipole

(Operation in X-Y square)

Integrated field 4.5 (A) / 2.5 (B) Tm

Minimum free aperture 150 mm

Nominal current < 2000 A

Radiation resistance  35 MGy

Physical length < 2.5 (A) / 1.505 (B) m

Working temperature 1.9 K

Iron geometry D1 (A) / MQXF (B) iron holes

Field quality
b3 < 20 units (1E-4), b5 < 7, 

the rest < 5 

Fringe field < 40 mT (Out of the Cryostat)

Magnet layout
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orientation)

First nested superconducting accelerator magnet 

with mechanical torque locking

Up to 147 kNm/m ¡¡~250 times the electric 

Porsche Taycan Turbo S motor torque in a A-

type magnet!!
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MCBXF Technical specifications

Magnet configuration
Combined dipole

(Operation in X-Y square)

Integrated field 4.5 (A) / 2.5 (B) Tm

Minimum free aperture 150 mm

Nominal current < 2000 A

Radiation resistance  35 MGy

Physical length < 2.5 (A) / 1.505 (B) m

Working temperature 1.9 K

Iron geometry D1 (A) / MQXF (B) iron holes

Field quality < 10 units (1E-4) 

Fringe field < 40 mT (Out of the Cryostat)

Magnet layout
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▪ Insulated with a braided 

glass fiber sleeve

▪ High number of turns: 

impregnated coils

MCBXFA

MCBXFB



Reminder: design fine-tuning (MCBXFB01)

6

Prototypes Series

59mm
▪ First two B-type prototypes 

performed long training with each 
torque inversion: quenches located 
at coil ends.

▪ The inner coil end of the first B-type 
series magnet MCBXFB01 was 
shortened by 118 mm to reduce the 
unlocked length at coil ends.

▪ In addition, endspacers legs were 
enlarged to increase the rigidity at the 
transition from the straight section to 
the coil heads.

▪ This successful fine-tuning of the 
design is implemented in A-type 
magnets.
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Electromagnetic calculations

MCBXFA / MCBXFB 

Parameter ID OD Units 

Nominal individual field 2.12 / 2.36 2.12 / 2.24 T 
Field integral 4.5 / 2.5 4.5 / 2.5 Tm 

Nominal current 1617 / 1755 1353 / 1435 A 
Ultimate current 1737 / 1855 1457 / 1545 A 

Pole length 1828 / 828 1828 / 828 mm 
Coil length 2224 / 1224 2342 / 1342 mm 

Differential inductance at 
nominal current 

101.3 / 52.5 234.1 / 
125.4 

mH 

Stored magnetic energy at 
nominal current 

132.7 / 81.1 224.8 / 
136.7 

kJ 

Stored magnetic energy at 
ultimate current 

153.1 / 93.5 257.8 / 
138.5 

kJ 

 

▪ Electromagnetic calculations performed 

with Xroxie.

▪ Challenging because of: high number of 

conductors, magnet length and lack of 

symmetry.

▪ Nominal currents of A-type magnet are lower:

▪ Less iron saturation (smaller iron holes)

▪ Larger ratio of straight cross section to coil end length
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Magnetic field quality (I)

MCBXFBMCBXFA
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▪ There are many powering scenarios.

▪ In the case of powering both dipoles with the same current, the effect of 

saturation is clearly visible. However, A-type magnet is much less sensitive.



9

Magnetic field quality (II)
MCBXFA MCBXFB
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▪ The iron saturation is mainly due to the outer dipole.

▪ A-type magnet features better field quality in any powering scenario.
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Mechanical design
▪ Axial Lorentz forces are lower wrt B-

type magnets: 15% for inner dipole and 

11% for outer dipole.

▪ Torque is about 13% lower than in B-

type magnets.

▪ Two 70-mm-thick endplates compress 

the iron and holds the axial Lorentz 

forces: elastic model based on four 

coupled springs.

▪ Eight 28-mm-diameter rods hold the 

endplates. Expected maximum force is 

about twice the Lorentz forces, that is a 

stress about 60 MPa at the rods.
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MCBXFA prototype fabrication

▪ The longest magnet ever produced at CIEMAT.

▪ Assembly will be done at CERN (lab 927)

▪ We use the same fabrication techniques that

are being used for the B-type coils:

▪ Binder application after each layer winding

▪ Vacuum impregnation with CTD-101K

First

finished

inner coil
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MCBXFA prototype: winding

▪ No significant differences in cable 

position at coil ends wrt B-type coils.

▪ Large sagitta at straight section: tight

tolerance for support arcs instead of 

increasing winding tension.
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MCBXFA prototype fabrication: impregnation

Assembly of inner coil impregnation mould

▪ Challenging assembly because of tight tolerances.

▪ Long time for resin injection into A-type coils:

▪ Viscosity and pot life is very sensitive to temperature: it is a factor of two from 60 to 50 degrees.

▪ The impregnation mould of the first long coils was too tightened: torque control of 120 Nm in the 

next ones.
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MCBXFA prototype fabrication: finished coils

▪ Arc coil length is checked with CMM. Very good uniformity in inner dipole coils. Slightly

below nominal because of resin contraction after curing.

▪ Outer dipole coils will be measured next week.
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Conclusions

▪ Long nested correctors are also part of CIEMAT contribution to HL-LHC.

▪ The fine-tuning of the design performed on short magnets is also applied to

the long ones.

▪ A-type magnets feature better field quality because iron saturation is smaller.

▪ Prototype components are produced at CIEMAT. 

▪ Impregnation of long coils is slow and must be carefully monitored to control 

the viscosity and pot life.

▪ Final step is the magnet assembly in collaboration with CERN starting in mid-

November. Powering test is foreseen in December.
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