

# First prototype of the long orbit nested corrector for HL-LHC

**Fernando Toral**, C. Alcázar, M. Domínguez, O. Durán, A. Estévez, J. A. García-Matos, L. García-Tabarés, L. A. González, P. Gómez, J. Jiménez, L. M. Martínez, T. Martínez, C. Martins Jardim, J. A. Pardo, J. M. Pérez, P. Sobrino (CIEMAT)

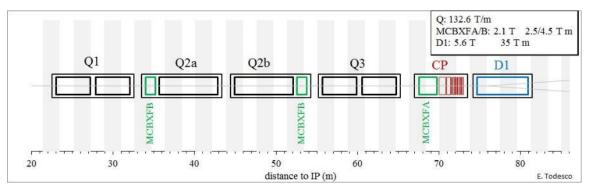
S. Ferradas, L. Fiscarelli, M. Guinchard, J. C. Perez, E. Todesco and G. Willering (CERN)












# Index

- Technical specifications
- Electromagnetic calculations
- Mechanical design
- Prototype fabrication
- Conclusions



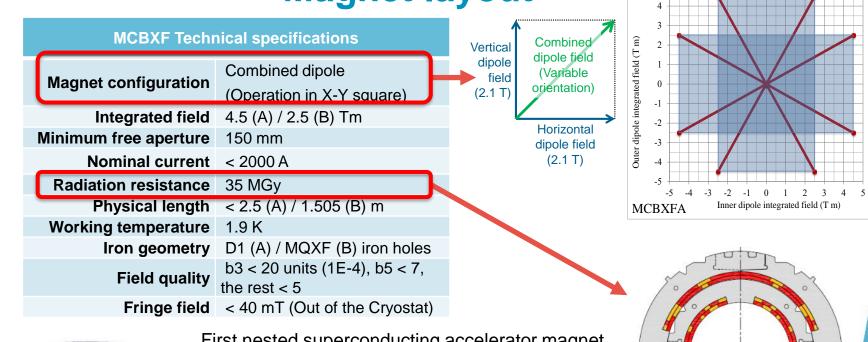
# **HL-LHC orbit correctors**



- MCBXF are nested dipole H/V correctors, the closest ones to the interaction point:
  - 150 mm single aperture, NbTi technology
  - Two magnet lengths with the same cross section:
    - Type A (2.5 m long): 1 prototype + 6 series (2 of them: spares)
    - Type B (1.5 m long): 2 prototypes + 12 series (4 of them: spares)
- CIEMAT deliverable: "bare" magnets
  - Powering tests done at CERN & FREIA
  - Integration in cold mass at CERN








ASC – 26<sup>th</sup> Oct 2022



MCBXFB ready to test at SM18 (CERN courtesy)

# Magnet layout





GOBIERNO

First nested superconducting accelerator magnet with mechanical torque locking Up to 147 kNm/m jj~250 times the electric Porsche Taycan Turbo S motor torque in a A-

type magnet!!



Ciemat MINISTERIO DE CIENCIA Centro de Investigaciones E INNOVACIÓ ereéticas Medicambientale

Ternológicas



#### ASC – 26<sup>th</sup> Oct 2022

# **Magnet layout**

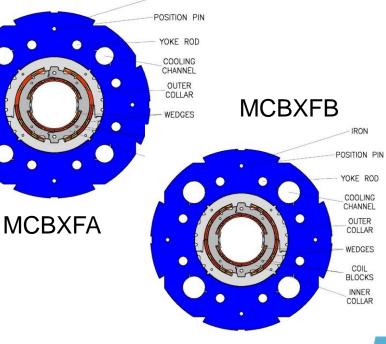
#### MCBXF Technical specifications

| Magnet configuration  | Combined dipole               |  |  |
|-----------------------|-------------------------------|--|--|
|                       | (Operation in X-Y square)     |  |  |
| Integrated field      | 4.5 (A) / 2.5 (B) Tm          |  |  |
| Minimum free aperture | 150 mm                        |  |  |
| Nominal current       | < 2000 A                      |  |  |
| Radiation resistance  | 35 MGy                        |  |  |
| Physical length       | < 2.5 (A) / 1.505 (B) m       |  |  |
| Working temperature   | 1.9 K                         |  |  |
| Iron geometry         | D1 (A) / MQXF (B) iron holes  |  |  |
| Field quality         | < 10 units (1E-4)             |  |  |
| Fringe field          | < 40 mT (Out of the Cryostat) |  |  |

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

GOBIERNO DE ESPAÑA


IL-LHC PROJEC

MINISTERIO DE CIENCIA

E INNOVACIÓN

#### Collection of the part **Cable Parameters** No. of strands 18 4.67 (4.37) Strand diameter 0.48 mm Cable thickness 0.845 mm Cable width 4.37 mm 0.87) ck Edge .172 **Key-stone angle** 0.67° Enlarged and not to scale, for illustration purposes only Cu:Sc 1.75 Ciemat

Tecnológico Industrial



IRON

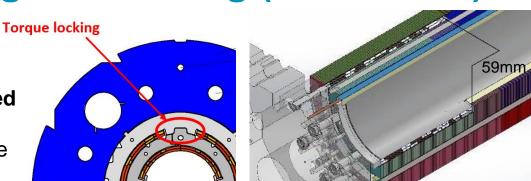
- Insulated with a braided glass fiber sleeve
- High number of turns: impregnated coils

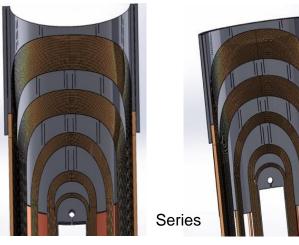
ASC – 26<sup>th</sup> Oct 2022



# **Reminder: design fine-tuning (MCBXFB01)**

- First two B-type prototypes performed **long training** with each torque inversion: **quenches located at coil ends.**
- The inner coil end of the first B-type series magnet MCBXFB01 was
  <u>shortened by 118 mm</u> to reduce the unlocked length at coil ends.
- In addition, endspacers legs were enlarged to increase the rigidity at the transition from the straight section to the coil heads.


Ciemat


Centro de Investigacione

réticas Medicambient

 This successful fine-tuning of the design is implemented in A-type magnets.

MINISTERIO





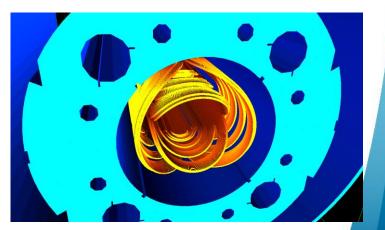




6

Prototypes

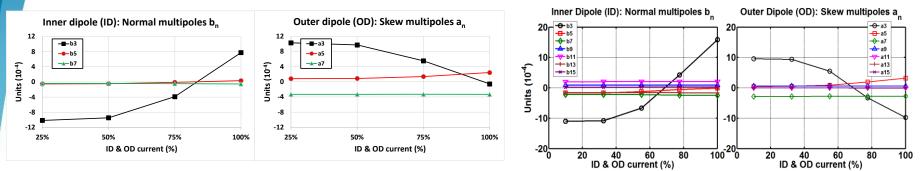
# **Electromagnetic calculations**


#### MCBXFA / MCBXFB

| Parameter                  | ID           | OD          | Units |
|----------------------------|--------------|-------------|-------|
| Nominal individual field   | 2.12 / 2.36  | 2.12 / 2.24 | Т     |
| Field integral             | 4.5 / 2.5    | 4.5 / 2.5   | Tm    |
| Nominal current            | 1617 / 1755  | 1353 / 1435 | А     |
| Ultimate current           | 1737 / 1855  | 1457 / 1545 | А     |
| Pole length                | 1828 / 828   | 1828 / 828  | mm    |
| Coil length                | 2224 / 1224  | 2342 / 1342 | mm    |
| Differential inductance at | 101.3 / 52.5 | 234.1 /     | mH    |
| nominal current            |              | 125.4       |       |
| Stored magnetic energy at  | 132.7 / 81.1 | 224.8 /     | kJ    |
| nominal current            |              | 136.7       |       |
| Stored magnetic energy at  | 153.1 / 93.5 | 257.8 /     | kJ    |
| ultimate current           |              | 138.5       |       |

- Nominal currents of A-type magnet are lower:
  - Less iron saturation (smaller iron holes)
  - Larger ratio of straight cross section to coil end length




- Electromagnetic calculations performed with Xroxie.
- Challenging because of: high number of conductors, magnet length and lack of symmetry.



# Magnetic field quality (I)

**MCBXFA** 





- There are many powering scenarios.
- In the case of powering both dipoles with the same current, the effect of saturation is clearly visible. However, A-type magnet is much less sensitive.

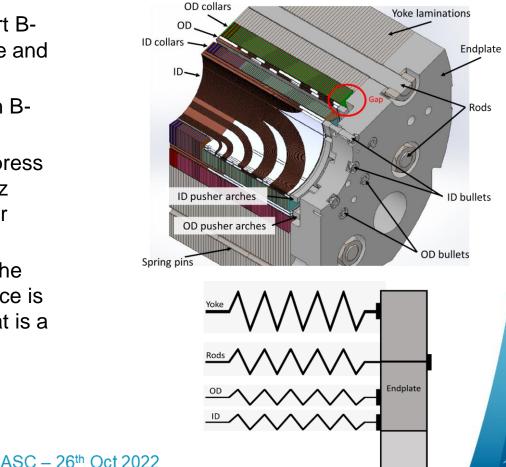


### Magnetic field quality (II) MCBXFA MCBXFB



- The iron saturation is mainly due to the outer dipole.
- A-type magnet features better field quality in any powering scenario.




# Index

- Technical specifications
- Electromagnetic calculations
- Mechanical design
- Prototype fabrication
- Conclusions



# **Mechanical design**

- Axial Lorentz forces are lower wrt Btype magnets: 15% for inner dipole and 11% for outer dipole.
- Torque is about 13% lower than in Btype magnets.
- Two 70-mm-thick endplates compress the iron and holds the axial Lorentz forces: elastic model based on four coupled springs.
- Eight 28-mm-diameter rods hold the endplates. Expected maximum force is about twice the Lorentz forces, that is a stress about 60 MPa at the rods.



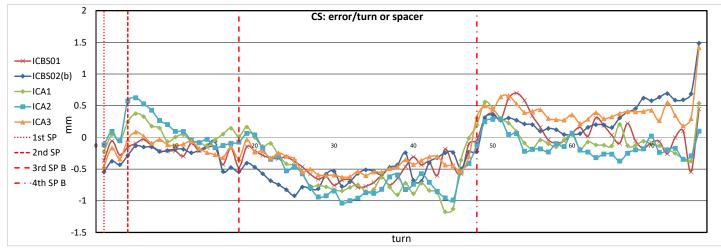
#### **MCBXFA** prototype fabrication

- The longest magnet ever produced at CIEMAT.
- Assembly will be done at CERN (lab 927)
- We use the same fabrication techniques that are being used for the B-type coils:
  - Binder application after each layer winding
  - Vacuum impregnation with CTD-101K

Ciemot

Centro de Investigaciones erréticas Medicambienta

MINISTERIC




First finished inner coil



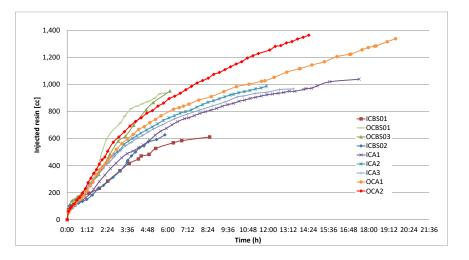
ASC - 26<sup>th</sup> Oct 2022

#### **MCBXFA prototype: winding**



- No significant differences in cable position at coil ends wrt B-type coils.
- Large sagitta at straight section: tight tolerance for support arcs instead of increasing winding tension.



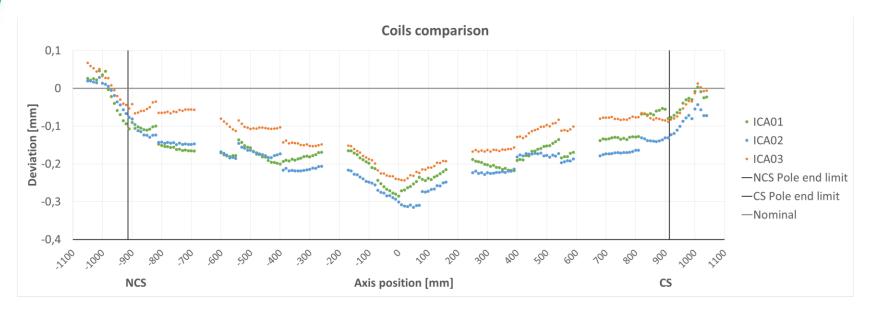



ASC – 26<sup>th</sup> Oct 2022

#### **MCBXFA** prototype fabrication: impregnation



Assembly of inner coil impregnation mould




- Challenging assembly because of tight tolerances.
- Long time for resin injection into A-type coils:
  - Viscosity and pot life is very sensitive to temperature: it is a factor of two from 60 to 50 degrees.
  - The impregnation mould of the first long coils was too tightened: torque control of 120 Nm in the next ones.





#### **MCBXFA** prototype fabrication: finished coils



- Arc coil length is checked with CMM. Very good uniformity in inner dipole coils. Slightly below nominal because of resin contraction after curing.
- Outer dipole coils will be measured next week.



#### Conclusions

- Long nested correctors are also part of CIEMAT contribution to HL-LHC.
- The fine-tuning of the design performed on short magnets is also applied to the long ones.
- A-type magnets feature better field quality because iron saturation is smaller.
- Prototype components are produced at CIEMAT.
- Impregnation of long coils is slow and must be carefully monitored to control the viscosity and pot life.
- Final step is the magnet assembly in collaboration with CERN starting in mid-November. Powering test is foreseen in December.



#### Acknowledgements to:

Pablo Abramian, Lyudmyla Andriychyk, Cristóbal Alcázar, Marcos Delgado, Manuel Domínguez, Óscar Durán, Jesus Angel García Matos, Luis Garcia-Tabarés, Luis González, Pablo Gómez, Jesús Jiménez, Teresa Martínez, Carla Martins, José Antonio Pardo, José Manuel Pérez, Pablo Sobrino, Fernando Toral from **CIEMAT** 

HL-LHC PROJEC

Nicolas Bourcey, Ruth Diaz, Hugues Dupont, Nicolas Eyraud, Salvador Ferradas, Bertrand Fornes, Jean-Luc Guyon, Hector Garcia, Pablo Gomez, Michael Guinchard, Lucio Fiscarelli, Gregory Maury, Sylvain Mugnier, Juan Carlos Pérez, Francois-Olivier Pincot, Joan Rico, Ezio Todesco, Lorcan Quain, Gerard Willering from **CERN** 







ASC - 26th Oct 2022