1) Reconstructed/second peak (closer than reco from True)
2) Reconstructed/second peak (not closer than reco from True)

N.B. NO Constriction <0.5 cm

Sum_pt_ratio

>1 -> 12.9% (compared to the total of events),
<1 -> 6.9% totally ~19.8

>1 -> 72.6% (compared to the total of events),
<1 -> 7.5%
1) Reconstructed/second peak (closer than reco from True)
2) Reconstructed/second peak (not closer than reco from True)

N.B. NO Constriction <0.5 cm

avv_pt_ratio

>1 → 10.87% (compared to the total of events),
<1 → 8.9%

>1 → 63.2% (compared to the total of events),
<1 → 16.9%
Std_dev_ratio

>1 -> 8.47% (compared to the total of events),
<1 -> 11.38%

1) Reconstructed/second peak (closer than reco from True)
2) Reconstructed/second peak (not closer than reco from True)

N.B. NO Constriction <0.5 cm

>1 -> 25.58% (compared to the total of events),
<1 -> 54.53%
multiplicity_ratio

>=1 \rightarrow 12.21\% \text{ (compared to the total of events)}

<1 \rightarrow 7.6\%

1) Reconstructed/second peak (closer than reco from True)

2) Reconstructed/second peak (not closer than reco from True)

N.B. NO Constriction <0.5 cm

19/09/22
• Before at Ref Value (Zreco-Ztrue<0.5) -> Recon 0.742097
• Now (Zreco-Ztrue<0.5) -> Recon 0.751170 \((\text{Mult}[0]/\text{Mult}[1])<0.4 \land (\text{Std}[0]/\text{Std}[1])<0.4\)

Can produce the Efficiency vs Zreco-Ztrue curves but I think there will be little difference
This is the same as before: After Adding Constriction <0.5 cm

1) Reconstructed/second peak (closer than reco from True)
2) Reconstructed/second peak (not closer than reco from True)

1) Sum pt > 1 = 0.067, Sum pt < 1 = 0.037,
 avv_pt > 1 = 0.053, avv_pt < 1 = 0.051,
 std_dev > 1 = 0.046, std_dev < 1 = 0.058,
 multiplicity > 1 = 0.062, multiplicity < 1 = 0.042

2) Sum pt > 1 = 65.5, Sum pt < 1 = 4.9,
 avv_pt > 1 = 57.85, avv_pt < 1 = 12.57,
 std_dev > 1 = 21.012, std_dev < 1 = 49.41,
 multiplicity > 1 = 58.3231, multiplicity < 1 = 12.105