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What is the sign problem?

Grand canonical partition function of QCD:

Z =

∫
DUDψDψ̄ e−S[U,ψ,ψ̄] =

∫
DU detM [U ]e−Sg[U ]

=

∫
DU e−Seff [U ] =

∫
DU w[U ] .

If w[U ] not real and positive ↔ Seff /∈ R: MC with importance sampling not possible
∼ complex action problem.

E.g.
▶ finite density/bariochemical potential QCD(-like models);
▶ Hubbard model of condensed matter physics;
▶ real time dynamics ∼ ⟨f |e−iH |i⟩ =

∫
Dx eiS[x] (see previous talk by Paul Hotzy);

▶ etc.
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What is the sign problem?

Q : How to overcome the complex action problem?

A: Simulate what you can and reweight to the original theory!

Expectation value through reweighting (r[U ] real and positive):

⟨O⟩w =

∫
DU O[U ]w[u]∫

DU w[u]
=

∫
DU O[U ]

w[U ]
r[U ]

r[U ]∫
DU w[U ]

r[U ]
r[U ]

=
⟨Ow

r
⟩r

⟨w
r
⟩r

.

Complex action problem reduces to the sign problem:
▶ large fluctuations in w

r
−→ large cancellations −→ large uncertainties (exp. in V, µ);

▶ severity of the sign problem:〈
w

r

〉
r

=
Zw
Zr

=⇒
{

1 ∼ perfect!
≈ 0 ∼ not so much. . .

E.g. phase quenched theory r = |w| ∼ detM → |detM |.
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Fighting the sign problem?

Why? :
▶ QCD;
▶ condensed matter physics

(Hubbard model);
▶ neutron stars;
▶ hydrodynamic simulations at

finite density;
▶ etc.

Reφ
Im
φ

original (Imφ= 0)
deformed #1
deformed #2
deformed #3
deformed #4

How? :
N -dim. integral over real fields to
▶ 2N -dim. integral over real and imaginary parts of complexified fields

(e.g. complex Langevin);

▶ N -dim. integral with deformed integration contour/manifold into the complexified
field space.
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Complex contour deformations

Aim :
▶ searching for theories “closer” to the original theory;
▶ with real and positive weights;
▶ hence acquiring better signal-to-noise ratios in observables.

Set of integration manifolds Mdef({p}) parameterised with some finite set of real
parameters {p}:

Z =

∫
Mdef

DUdef w[Udef ] =

∫
Mdef

DX detJ (X)w[Udef(X)] .

In this case the phase quenched partition function:

Zdef
PQ({p}) =

∫
Mdef

DX
∣∣∣∣ detJ (X)w[Udef(X)]

∣∣∣∣ ,
hence the severity of the sign problem:

〈
w

r

〉
r

=
Z

Zdef
PQ({p})

=

〈
detJw[Udef ]

|detJw[Udef ]|

〉def

PQ

:= ⟨eiθ⟩ .
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Integration manifold optimisation ∼ machine learning

The sign problem is milder if

Z
Zdef

PQ({p})
is maximal!

Y. Mori et. al. arXiv:1705.05605 [hep-lat]

Introducing a cost function and minimise it by varying {p}:

F({p}) = − log⟨eiθ⟩ = − logZ + logZdef
PQ({p}) .

One can utilise machine learning algorithms (e.g. gradient descent) and compute
gradients:

∇pF({p}) = ∇p logZPQ({p}) = −
〈
∇pSeff −∇p log |detJ |

〉def
PQ

.
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Application: Stephanov model

∼ chiral random matrix model (Stephanov: [arXiv:hep-lat/9604003]):

Z =

∫
DU detM [U ]e−Sg[U ] vs. Z = eNµ

2
∫

dWdW † detNf (D +m) e−NTr(WW†) ,

where:
▶ W,W † ∈ CN×N , general complex

matrices → 2N2 DoF;
▶ Nf : flavour number;
▶ µ : chemical potential;
▶ m : quark mass;
▶ and massless Dirac operator

D =

(
0 iW + µ

iW † + µ 0

)
∈ C2N×2N

[arXiv:hep-ph/0003017]

▶ chiral condensate Σ(m,µ) ∝ ∂ logZ/∂m
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▶ baryon number density nB ∝ ∂ logZ/∂µ
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Application: Stephanov model and its sign problem at finite µ

Severity of the sign problem (average phase):

⟨eiθ⟩ =
Z

ZPQ
=

〈
detNf (D +m)

|detNf (D +m)|

〉
PQ

.
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Complex Langevin method does not work for this model:
J. Bloch et. al arXiv:hep-lat/1712.07514.
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Application: complexification and deformation ansätze

▶ Complexification:

W = A+ iB → X = α+ iβ

W † = AT − iBT → Y = αT − iβT

A,B ∈ RN×N and α, β ∈ CN×N .

α, β parameterised by A,B with some
set of parameters {p}.

▶ Partition functions:

■ deformations are chosen such that Z
remains invariant,

■ while ZPQ ≡ ZPQ({p}) does not!

▶ Motivation:

µ can be transformed out of the Dirac
operator via a constant imaginary shift
in matrix A:

D =

(
0 (iA−B) + µ

(iAT +BT) + µ 0

)

ww�
The ansatz :

α = A+ ik1id

β = B + ik2id

k1, k2 ∈ R and detJ = 1.
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Example result: constant shift ansatz

Ansatz :
α = A+ ik1id
β = B+ ik2id
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▶ Only relevant parameter is k1.

▶ Same result emerges from 20-parameter linear ansatz (Ima = k1):

α = (a+ bTrA+ cTrB)id + (1 + d)A+ eB

β = (f + gTrA+ hTrB)id + jA+ (1 + k)B
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Example result: µ- and N -dependence
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Example result: piecewise optimisation of the trace

∼ deforming only t = TrA.

Ansatz (β = B):

A =
t

N
id +

(
A−

t

N
id

)
=

t

N
id + Ã → α =

τ

N
id + Ã ,

TrÃ = 0 and τ = t+ if(t; {yk}, {xk}) where f is some (e.g. linear) interpolation function.

▶ {yk}: parameters to optimise;
▶ {xk}: nodes on the original contour.
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Discussion and outlook

Findings:

▶ The sign problem in theories with a fermion determinant could be improved through
complex contour deformations.

▶ Deformations that weaken the sign problem the most (i.e. some constant shift
∝ i · id) has no direct counterpart in full-QCD.

▶ Still, numerically the improvement appears to be exponential in V and µ.

▶ The optimisation method (i.e. machine learning) is an applicable way to find the
optima of the deformation parameters in different änsatze.

To do:

▶ We shall use a more realistic toy model of QCD, or continue with chRMT but only
with deformations allowed in full-QCD.

▶ Planned: applications in heavy dense QCD in 2 and/or 4 dimensions.
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The End

Thank you for your attention.
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