Fighting the sign problem with contour deformations

Dávid Pesznyák

Eötvös Loránd University

in collaboration with Matteo Giordano, Attila Pásztor and Zoltán Tulipánt

22nd ZIMÁNYI SCHOOL WINTER WORKSHOP ON HEAVY ION PHYSICS December 5-9, 2022, Budapest, Hungary

What is the sign problem?

Grand canonical partition function of QCD:

$$\begin{aligned} \mathcal{Z} &= \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi} \; e^{-S[U,\psi,\bar{\psi}]} = \int \mathcal{D}U \; \mathrm{det}M[U] e^{-S_{\mathrm{g}}[U]} \\ &= \int \mathcal{D}U \; e^{-S_{\mathrm{eff}}[U]} = \int \mathcal{D}U \; w[U] \; . \end{aligned}$$

If w[U] not real and positive $\leftrightarrow S_{\text{eff}} \notin \mathbb{R}$: MC with importance sampling not possible $\sim \text{ complex action problem}$.

E.g.

- ▶ finite density/bariochemical potential QCD(-like models);
- Hubbard model of condensed matter physics;
- ▶ real time dynamics ~ $\langle f|e^{-iH}|i\rangle = \int \mathcal{D}x \ e^{iS[x]}$ (see previous talk by Paul Hotzy);

▶ etc.

What is the sign problem?

- Q: How to overcome the complex action problem?
- A: Simulate what you can and reweight to the original theory!

Expectation value through reweighting (r[U] real and positive):

$$\langle \mathcal{O} \rangle_w = \frac{\int \mathcal{D}U \ \mathcal{O}[U]w[u]}{\int \mathcal{D}U \ w[u]} = \frac{\int \mathcal{D}U \ \mathcal{O}[U]\frac{w[U]}{r[U]}r[U]}{\int \mathcal{D}U \ \frac{w[U]}{r[U]}r[U]} = \frac{\langle \mathcal{O}\frac{w}{r} \rangle_r}{\langle \frac{w}{r} \rangle_r}$$

Complex action problem reduces to the **sign problem**:

- ▶ large fluctuations in $\frac{w}{r}$ → large cancellations → large uncertainties (exp. in V, μ);
- severity of the sign problem:

$$\left\langle \frac{w}{r} \right\rangle_r = \frac{\mathcal{Z}_w}{\mathcal{Z}_r} \qquad \Longrightarrow \qquad \begin{cases} 1 & \sim \text{ perfect!} \\ \approx 0 & \sim \text{ not so much...} \end{cases}$$

E.g. phase quenched theory $r = |w| \sim \det M \to |\det M|$.

Fighting the sign problem?

Why?:

- \blacktriangleright QCD;
- condensed matter physics (Hubbard model);
- neutron stars;
- hydrodynamic simulations at finite density;
- ▶ etc.

3/13

How?:

N-dim. integral over real fields to

- 2N-dim. integral over real and imaginary parts of complexified fields (e.g. complex Langevin);
- N-dim. integral with deformed integration contour/manifold into the complexified field space.

Complex contour deformations

Aim:

- searching for theories "closer" to the original theory;
- with real and positive weights;
- hence acquiring better signal-to-noise ratios in observables.

Set of integration manifolds $\mathcal{M}_{def}(\{p\})$ parameterised with some finite set of real parameters $\{p\}$:

$$\mathcal{Z} = \int_{\mathcal{M}_{def}} \mathcal{D}U_{def} \ w[U_{def}] = \int_{\mathcal{M}_{def}} \mathcal{D}X \ \det \mathcal{J}(X)w[U_{def}(X)] \ .$$

In this case the phase quenched partition function:

$$\mathcal{Z}_{\mathrm{PQ}}^{\mathrm{def}}(\{p\}) = \int_{\mathcal{M}_{\mathrm{def}}} \mathcal{D}X \left| \det \mathcal{J}(X)w[U_{\mathrm{def}}(X)] \right|,$$

hence the severity of the sign problem:

$$\left\langle \frac{w}{r} \right\rangle_r = \frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{PQ}}^{\mathrm{def}}(\{p\})} = \left\langle \frac{\det \mathcal{J}w[U_{\mathrm{def}}]}{|\det \mathcal{J}w[U_{\mathrm{def}}]|} \right\rangle_{\mathrm{PQ}}^{\mathrm{def}} \coloneqq \langle e^{i\theta} \rangle .$$

Integration manifold optimisation \sim machine learning

The sign problem is milder if

$$\frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{PQ}}^{\mathrm{def}}(\{p\})} \text{ is maximal!}$$

Y. Mori et. al. arXiv:1705.05605 [hep-lat]

Introducing a **cost function** and minimise it by varying $\{p\}$:

$$\mathcal{F}(\{p\}) = -\log\langle e^{i\theta} \rangle = -\log \mathcal{Z} + \log \mathcal{Z}_{\mathrm{PQ}}^{\mathrm{def}}(\{p\}) .$$

One can utilise machine learning algorithms (e.g. gradient descent) and compute gradients:

$$\nabla_p \mathcal{F}(\{p\}) = \nabla_p \log \mathcal{Z}_{\mathrm{PQ}}(\{p\}) = -\langle \nabla_p S_{\mathrm{eff}} - \nabla_p \log |\mathrm{det}\mathcal{J}| \rangle_{\mathrm{PQ}}^{\mathrm{def}}.$$

Application: Stephanov model

 \sim chiral random matrix model (Stephanov: [arXiv:hep-lat/9604003]):

$$\mathcal{Z} = \int \mathcal{D}U \,\det M[U] e^{-S_{g}[U]} \quad \text{vs.} \quad \mathcal{Z} = e^{N\mu^{2}} \int dW dW^{\dagger} \,\det^{N_{f}}(D+m) \,e^{-N\operatorname{Tr}(WW^{\dagger})}$$

where:

- ► $W, W^{\dagger} \in \mathbb{C}^{N \times N}$, general complex matrices $\rightarrow 2N^2$ DoF;
- \triangleright N_f : flavour number;
- μ : chemical potential;
- \blacktriangleright *m* : quark mass;
- and massless Dirac operator

$$D = \begin{pmatrix} 0 & iW + \mu \\ iW^{\dagger} + \mu & 0 \end{pmatrix} \in \mathbb{C}^{2N \times 2N}$$

[arXiv:hep-ph/0003017]

• chiral condensate $\Sigma(m,\mu) \propto \partial \log \mathcal{Z}/\partial m$

▶ baryon number density $n_B \propto \partial \log \mathcal{Z} / \partial \mu$

Application: Stephanov model and its sign problem at finite μ

Severity of the sign problem (average phase):

$$\langle e^{i\theta} \rangle = \frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{PQ}}} = \left\langle \frac{\det^{N_f}(D+m)}{|\det^{N_f}(D+m)|} \right\rangle_{\mathrm{PQ}}$$

Complex Langevin method does not work for this model: J. Bloch et. al arXiv:hep-lat/1712.07514.

Application: complexification and deformation ansätze

Complexification:

$$\begin{split} W &= A + i B \quad \rightarrow \quad X = \alpha + i \beta \\ W^{\dagger} &= A^{\mathrm{T}} - i B^{\mathrm{T}} \rightarrow \quad Y = \alpha^{\mathrm{T}} - i \beta^{\mathrm{T}} \end{split}$$

$$A, B \in \mathbb{R}^{N \times N}$$
 and $\alpha, \beta \in \mathbb{C}^{N \times N}$

 α, β parameterised by A, B with some set of parameters $\{p\}$.

Partition functions:

 deformations are chosen such that Z remains invariant,

• while
$$Z_{PQ} \equiv Z_{PQ}(\{p\})$$
 does not!

Motivation:

 μ can be transformed out of the Dirac operator via a constant imaginary shift in matrix A:

$$D = \begin{pmatrix} 0 & (iA - B) + \mu \\ (iA^{\mathrm{T}} + B^{\mathrm{T}}) + \mu & 0 \end{pmatrix}$$

 \downarrow

8/13

The ansatz:

 $\label{eq:alpha} \begin{array}{l} \alpha = A + i k_1 \mathrm{id} \\ \beta = B + i k_2 \mathrm{id} \\ k_1, k_2 \in \mathbb{R} \mbox{ and } \det \mathcal{J} = 1. \end{array}$

Example result: constant shift ansatz

- Only relevant parameter is k_1 .
- Same result emerges from 20-parameter linear ansatz ($Ima = k_1$):

$$\begin{aligned} \alpha &= (a + b \operatorname{Tr} A + c \operatorname{Tr} B) \operatorname{id} + (1 + d) A + eB \\ \beta &= (f + g \operatorname{Tr} A + h \operatorname{Tr} B) \operatorname{id} + jA + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + jA + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + jA + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + jA + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + jA + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + jA + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + jA + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + jA + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + k)B \\ &= (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + e) \operatorname{Tr} A + b \operatorname{Tr} B + (1 + e) \operatorname{Tr} A + b \operatorname{Tr} A + b$$

Example result: μ - and N-dependence

ż

4

 $\stackrel{6}{N}$

8

10

イロト イロト イヨト イヨト

æ

^{10 / 13}

Example result: piecewise optimisation of the trace

~ deforming only t = TrA.

Ansatz $(\beta = B)$:

$$A = \frac{t}{N} \mathrm{id} + \left(A - \frac{t}{N} \mathrm{id} \right) = \frac{t}{N} \mathrm{id} + \tilde{A} \quad \rightarrow \quad \alpha = \frac{\tau}{N} \mathrm{id} + \tilde{A} \;,$$

 $\operatorname{Tr} \tilde{A} = 0$ and $\tau = t + if(t; \{y_k\}, \{x_k\})$ where f is some (e.g. linear) interpolation function.

• $\{y_k\}$: parameters to optimise;

• $\{x_k\}$: nodes on the original contour.

Discussion and outlook

Findings:

- ▶ The sign problem in theories with a fermion determinant could be improved through complex contour deformations.
- ▶ Deformations that weaken the sign problem the most (i.e. some constant shift $\propto i \cdot id$) has no direct counterpart in full-QCD.
- Still, numerically the improvement appears to be exponential in V and μ .
- ▶ The optimisation method (i.e. machine learning) is an applicable way to find the optima of the deformation parameters in different änsatze.

To do:

- We shall use a more realistic toy model of QCD, or continue with chRMT but only with deformations allowed in full-QCD.
- ▶ Planned: applications in heavy dense QCD in 2 and/or 4 dimensions.

Thank you for your attention.

Supported by the ÚNKP-22-3 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの