Fighting the sign problem with contour deformations

Dávid Pesznyák

> Eötvös Loránd University
in collaboration with
Matteo Giordano, Attila Pásztor and Zoltán Tulipánt

What is the sign problem?

Grand canonical partition function of QCD:

$$
\begin{aligned}
\mathcal{Z} & =\int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-S[U, \psi, \bar{\psi}]}=\int \mathcal{D} U \operatorname{det} M[U] e^{-S_{\mathrm{g}}[U]} \\
& =\int \mathcal{D} U e^{-S_{\mathrm{eff}}[U]}=\int \mathcal{D} U w[U]
\end{aligned}
$$

If $w[U]$ not real and positive $\leftrightarrow S_{\text {eff }} \notin \mathbb{R}$: MC with importance sampling not possible \sim complex action problem.

E.g.

- finite density/bariochemical potential QCD(-like models);
- Hubbard model of condensed matter physics;
- real time dynamics $\sim\langle f| e^{-i H}|i\rangle=\int \mathcal{D} x e^{i S[x]}$ (see previous talk by Paul Hotzy);
- etc.

What is the sign problem?

Q : How to overcome the complex action problem?
\boldsymbol{A} : Simulate what you can and reweight to the original theory!

Expectation value through reweighting ($r[U]$ real and positive):

$$
\langle\mathcal{O}\rangle_{w}=\frac{\int \mathcal{D} U \mathcal{O}[U] w[u]}{\int \mathcal{D} U w[u]}=\frac{\int \mathcal{D} U \mathcal{O}[U] \frac{w[U]}{r[U]} r[U]}{\int \mathcal{D} U \frac{w[U]}{r[U]} r[U]}=\frac{\left\langle\mathcal{O} \frac{w}{r}\right\rangle_{r}}{\left\langle\frac{w}{r}\right\rangle_{r}} .
$$

Complex action problem reduces to the sign problem:

- large fluctuations in $\frac{w}{r} \longrightarrow$ large cancellations \longrightarrow large uncertainties (exp. in V, μ);
- severity of the sign problem:

$$
\left\langle\frac{w}{r}\right\rangle_{r}=\frac{\mathcal{Z}_{w}}{\mathcal{Z}_{r}} \quad \Longrightarrow \quad\left\{\begin{aligned}
1 & \sim \text { perfect! } \\
\approx 0 & \sim \text { not so much. } .
\end{aligned}\right.
$$

E.g. phase quenched theory $r=|w| \sim \operatorname{det} M \rightarrow|\operatorname{det} M|$.

Fighting the sign problem?

Why?:

- QCD;
- condensed matter physics (Hubbard model);
- neutron stars;
- hydrodynamic simulations at finite density;
- etc.

How?:

N-dim. integral over real fields to

- $2 N$-dim. integral over real and imaginary parts of complexified fields (e.g. complex Langevin);
- N-dim. integral with deformed integration contour/manifold into the complexified field space.

Complex contour deformations

Aim:

- searching for theories "closer" to the original theory;
- with real and positive weights;
- hence acquiring better signal-to-noise ratios in observables.

Set of integration manifolds $\mathcal{M}_{\text {def }}(\{p\})$ parameterised with some finite set of real parameters $\{p\}$:

$$
\mathcal{Z}=\int_{\mathcal{M}_{\mathrm{def}}} \mathcal{D} U_{\mathrm{def}} w\left[U_{\mathrm{def}}\right]=\int_{\mathcal{M}_{\mathrm{def}}} \mathcal{D} X \operatorname{det} \mathcal{J}(X) w\left[U_{\mathrm{def}}(X)\right] .
$$

In this case the phase quenched partition function:

$$
\mathcal{Z}_{\mathrm{PQ}}^{\mathrm{def}}(\{p\})=\int_{\mathcal{M}_{\mathrm{def}}} \mathcal{D} X\left|\operatorname{det} \mathcal{J}(X) w\left[U_{\operatorname{def}}(X)\right]\right|
$$

hence the severity of the sign problem:

$$
\left\langle\frac{w}{r}\right\rangle_{r}=\frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{PQ}}^{\mathrm{def}}(\{p\})}=\left\langle\frac{\operatorname{det} \mathcal{J} w\left[U_{\mathrm{def}}\right]}{\left|\operatorname{det} \mathcal{J} w\left[U_{\mathrm{def}}\right]\right|}\right\rangle_{\mathrm{PQ}}^{\mathrm{def}}:=\left\langle e^{i \theta}\right\rangle .
$$

Integration manifold optimisation \sim machine learning

The sign problem is milder if

$$
\frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{PQ}}^{\text {def }}(\{p\})} \text { is maximal! }
$$

Y. Mori et. al. arXiv:1705.05605 [hep-lat]

Introducing a cost function and minimise it by varying $\{p\}$:

$$
\mathcal{F}(\{p\})=-\log \left\langle e^{i \theta}\right\rangle=-\log \mathcal{Z}+\log \mathcal{Z}_{\mathrm{PQ}}^{\text {def }}(\{p\}) .
$$

One can utilise machine learning algorithms (e.g. gradient descent) and compute gradients:

$$
\nabla_{p} \mathcal{F}(\{p\})=\nabla_{p} \log \mathcal{Z}_{\mathrm{PQ}}(\{p\})=-\left\langle\nabla_{p} S_{\mathrm{eff}}-\nabla_{p} \log \right| \operatorname{det} \mathcal{J}| \rangle_{\mathrm{PQ}}^{\mathrm{def}} .
$$

Application: Stephanov model

\sim chiral random matrix model (Stephanov: [arXiv:hep-lat/9604003]):

$$
\mathcal{Z}=\int \mathcal{D} U \operatorname{det} M[U] e^{-S_{\mathrm{g}}[U]} \quad \text { vs. } \mathcal{Z}=e^{N \mu^{2}} \int \mathrm{~d} W \mathrm{~d} W^{\dagger} \operatorname{det}^{N_{f}}(D+m) e^{-N \operatorname{Tr}\left(W W^{\dagger}\right)}
$$

- chiral condensate $\Sigma(m, \mu) \propto \partial \log \mathcal{Z} / \partial m$
where:
- $W, W^{\dagger} \in \mathbb{C}^{N \times N}$, general complex matrices $\rightarrow 2 N^{2}$ DoF;
- N_{f} : flavour number;
- μ : chemical potential;
- m : quark mass;
- and massless Dirac operator

$$
D=\left(\begin{array}{cc}
0 & i W+\mu \\
i W^{\dagger}+\mu & 0
\end{array}\right) \in \mathbb{C}^{2 N \times 2 N}
$$

[arXiv:hep-ph/0003017]

- baryon number density $n_{B} \propto \partial \log \mathcal{Z} / \partial \mu$

Application: Stephanov model and its sign problem at finite μ
Severity of the sign problem (average phase):

$$
\left\langle e^{i \theta}\right\rangle=\frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{PQ}}}=\left\langle\frac{\operatorname{det}^{N_{f}}(D+m)}{\left|\operatorname{det}^{N_{f}}(D+m)\right|}\right\rangle_{\mathrm{PQ}}
$$

Complex Langevin method does not work for this model:
J. Bloch et. al arXiv:hep-lat/1712.07514.

Application: complexification and deformation ansätze

- Complexification:

$$
\begin{aligned}
W & =A+i B \quad \rightarrow \quad X=\alpha+i \beta \\
W^{\dagger} & =A^{\mathrm{T}}-i B^{\mathrm{T}} \rightarrow
\end{aligned} \quad Y=\alpha^{\mathrm{T}}-i \beta^{\mathrm{T}} .
$$

$A, B \in \mathbb{R}^{N \times N}$ and $\alpha, \beta \in \mathbb{C}^{N \times N}$.
α, β parameterised by A, B with some set of parameters $\{p\}$.

- Partition functions:
- deformations are chosen such that \mathcal{Z} remains invariant,
\square while $\mathcal{Z}_{\mathrm{PQ}} \equiv \mathcal{Z}_{\mathrm{PQ}}(\{p\})$ does not!
- Motivation:
μ can be transformed out of the Dirac operator via a constant imaginary shift in matrix A :

$$
D=\left(\begin{array}{cc}
0 & (i A-B)+\mu \\
\left(i A^{\mathrm{T}}+B^{\mathrm{T}}\right)+\mu & 0
\end{array}\right)
$$

The ansatz:

$$
\begin{aligned}
\alpha & =A+i k_{1} \mathrm{id} \\
\beta & =B+i k_{2} \mathrm{id}
\end{aligned}
$$

$k_{1}, k_{2} \in \mathbb{R}$ and $\operatorname{det} \mathcal{J}=1$.

Example result: constant shift ansatz

Ansatz:
$\alpha=A+i k_{1} \mathrm{id}$
$\beta=B+i k_{2} \mathrm{id}$

- Only relevant parameter is k_{1}.
- Same result emerges from 20-parameter linear ansatz $\left(\operatorname{Im} a=k_{1}\right)$:

$$
\begin{aligned}
& \alpha=(a+b \operatorname{Tr} A+c \operatorname{Tr} B) \mathrm{id}+(1+d) A+e B \\
& \beta=(f+g \operatorname{Tr} A+h \operatorname{Tr} B) \mathrm{id}+j A+(1+k) B
\end{aligned}
$$

Example result: μ - and N-dependence

| | original, $N=2$ |
| :--- | :--- | :--- |
| | deformed |
| | original, $N=4$ |
| | deformed |
| | original, $N=6$ |
| | deformed |

Example result: piecewise optimisation of the trace

\sim deforming only $t=\operatorname{Tr} A$.
Ansatz $(\beta=B)$:

$$
A=\frac{t}{N} \mathrm{id}+\left(A-\frac{t}{N} \mathrm{id}\right)=\frac{t}{N} \mathrm{id}+\tilde{A} \quad \rightarrow \quad \alpha=\frac{\tau}{N} \mathrm{id}+\tilde{A}
$$

$\operatorname{Tr} \tilde{A}=0$ and $\tau=t+i f\left(t ;\left\{y_{k}\right\},\left\{x_{k}\right\}\right)$ where f is some (e.g. linear) interpolation function.

- $\left\{y_{k}\right\}$: parameters to optimise;
- $\left\{x_{k}\right\}$: nodes on the original contour.

Discussion and outlook

Findings:

- The sign problem in theories with a fermion determinant could be improved through complex contour deformations.
- Deformations that weaken the sign problem the most (i.e. some constant shift $\propto i \cdot \mathrm{id})$ has no direct counterpart in full-QCD.
- Still, numerically the improvement appears to be exponential in V and μ.
- The optimisation method (i.e. machine learning) is an applicable way to find the optima of the deformation parameters in different änsatze.

To do:

- We shall use a more realistic toy model of QCD, or continue with chRMT but only with deformations allowed in full-QCD.
- Planned: applications in heavy dense QCD in 2 and/or 4 dimensions.

The End

Thank you for your attention.

Supported by the ÚNKP-22-3 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund

