

FEMTOSCOPY WITH LÉVY DISTRIBUTIONS FROM SPS TO LHC

CSANÁD MÁTÉ (EÖTVÖS UNIVERSITY) ZIMÁNYI SCHOOL WINTER WORKSHOP 2022

2_{/28} CONTENTS OF THIS TALK

- Basics of femtoscopy and Lévy sources
- A sample of experimental results
- Recent phenomenological updates
- Recent experimental results
- Summary and outlook

3_{/28} CONTENTS OF THIS TALK

- Basics of femtoscopy and Lévy sources
- A sample of experimental results
- Recent phenomenological updates

PHENOME

- Recent experimental results
- Summary and outlook

Dec 6, 2022

4/28 FEMTOSCOPY IN HIGH ENERGY PHYSICS

- R. Hanbury Brown, R. Q. Twiss observing Sirius with radio telescopes
 - Intensity correlations vs detector distance \Rightarrow source size
 - Measure the sizes of apparently point-like sources!
- Goldhaber et al: applicable in high energy physics
- Understanding: Glauber, Fano, Baym, ...
 Phys. Rev. Lett. 10, 84; Rev. Mod. Phys. 78 1267, ...
 - Momentum correlation C(q) related to source S(r)
 - $C(q) \cong 1 + \left| \int S(r)e^{iqr}dr \right|^2$ (under some assumptions)
 - Also with distance distribution D(r):
 - $C(q) \cong 1 + \int D(r)e^{iqr}dr$
 - Neglected: pair reco., final state int.,
 N-particle correlations, coherence, ...

source function S(r) correlation funct. C(q)

• Only way to map out source space-time geometry on femtometer scale!

Normal

diffusion

Anomalous diffusion

(Lévv fliah

5/28 LÉVY DISTRIBUTIONS IN HEAVY ION PHYSICS

- Central limit theorem (diffusion) and thermodynamics lead to Gaussians
- Measurements suggest phenomena beyond Gaussian distribution
- Lévy-stable distribution: $\mathcal{L}(\alpha, R; r) = (2\pi)^{-3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$
 - From generalized central limit theorem, power-law tail ~ r $^{-(1+\alpha)}$
 - Special cases: $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy

- Shape of the correlation functions with Levy source:
 - $C_2(q) = 1 + \lambda \cdot e^{-|qR|^{\alpha}}$; $\alpha = 2$: Gaussian; $\alpha = 1$: exponential Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67-78
- A possible reason for Levy source: anomalous diffusion, many others

6/28 WHY DOES LÉVY APPEAR, WHY IS IT IMPORTANT?

- A more comprehensive list of possible reasons:
 - Jet fragmentation (Csörgő, Hegyi, Novák, Zajc, Acta Phys.Polon. B36 (2005) 329-337)
 - Critical phenomena (Csörgő, Hegyi, Novák, Zajc, AIP Conf.Proc. 828 (2006) no. 1, 525-532)
 - Direction averaging and non-sphericality (Cimerman et al., Phys.Part.Nucl. 51 (2020) 282)
 - Event averaging (Cimerman et al., Phys.Part.Nucl. 51 (2020) 282)
 - Resonance decays (Csanád, Csörgő, Nagy, Braz.J.Phys. 37 (2007) 1002; Kincses, Stefaniak, Csanád, Entropy 24 (2022) 308)
 - Hadronic rescattering, Lévy flight (Braz.J.Phys. 37 (2007) 1002; Entropy 24 (2022) 308)
- Importance of utilizing Lévy sources:
 - Measuring α and R
 - Order of quark-hadron transition, critical point search
 - General understanding of source dynamics
 - Measuring λ also requires correct shape assumption
 - In-medium mass modification, coherent pion production

7₀₈ LÉVY VERSUS GAUSS VERSUS EXPONENTIAL

- No tail if $\alpha = 2$, power law if $\alpha < 2$; tail strength depends on α
- If S(r) Lévy, D(r) also Lévy with same α and $R \rightarrow 2^{1/\alpha} R$
- In principle, RMS = ∞ if $\alpha < 2$
- In practice, RMS depends on cutoff
- What do Gaussian HBT radii mean?

8/28 LÉVY INDEX AS A CRITICAL EXPONENT?

- Critical spatial correlation: ~ $r^{-(d-2+\eta)}$; Lévy source: ~ $r^{-(1+\alpha)}$; $\alpha \Leftrightarrow \eta$? Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67,
- QCD universality class ↔ 3D Ising Halasz et al., Phys.Rev.D58 (1998) 096007 Stephanov et al., Phys.Rev.Lett.81 (1998) 4816
- At the critical point:
 - Random field 3D Ising: η = 0.50±0.05 Rieger, Phys.Rev.B52 (1995) 6659
 - 3D Ising: η = 0.03631(3)
 El-Showk et al., J.Stat.Phys.157 (4-5):869
- Motivation for precise Lévy HBT!
- Change in α_{Levy} proximity of CEP?
- Finite size/time & non-equilibrium effects
 → what does power law mean?

9_{/28} CONTENTS OF THIS TALK

- Basics of femtoscopy and Lévy sources
- A sample of experimental results
- Recent phenomenological updates

EXPERIMENT PHENOMENO

- Recent experimental results
- Summary and outlook

O₁₂₈ EXAMPLE C₂(Q_{LCMS}) CORRELATION FUNCTION

- Correlation function: spherical in LCMS
 - ID measurement possible
 - Done in several m_T bins
- Fit with calculation based on Lévy distribution
- Only converging fits with good confidence level accepted
- Physical parameters: R, λ , α measured versus pair m_T

Longitudinally CoMoving System (LCMS)

LÉVY EXPONENT IN IDVS 3D

• Lévy exponent α in 3D analysis similar to 1D result

2₁₂₈ ANALYZING THE CENTRALITY DEPENDENCE

- Slightly non-monotonic behavior as a function of m_T, averaging still possible
- $\langle \alpha \rangle$ vs N_{part}: slightly non-monotonic behavior versus, decreasing for large N_{part}
- No clear interpretation or understanding of this trend, need theory comparision
- Final data and publication in the works at PHENIX

3/28 LÉVY SCALE PARAMETER R AT RHIC

- Similar decreasing trend as Gaussian HBT radii, but it is not an RMS!
 - RMS of a Lévy source: in principle infinity, obtained value depends on cutoff
- What do model calculations, simulations say about this?
- Hydro behavior $(1/R^2 \sim m_T)$, predicted for Gaussian case) not invalid

Dec 6, 2022

4/28 CORRELATION STRENGTH λ: IN-MEDIUM MASS?

- Connection to chiral restoration
 - Decreased η' mass \rightarrow more η' produced \rightarrow more decay pions $\rightarrow \lambda$ decreases
 - Kinematics: $\eta' \rightarrow \pi \pi \pi \pi$ with low $m_T \rightarrow$ decreased $\lambda(m_T)$ specifically at low m_T
 - Dependence on in-medium η' mass?
 Kapusta, Kharzeev, McLerran, PRD53 (1996) 5028
 Vance, Csörgő, Kharzeev, PRL 81 (1998) 2205
 Csörgő, Vértesi, Sziklai, PRL105 (2010) 182301

- Results not incompatible with this
- 3D results similar to ID
- Need direct check with photons

5/28 CONTENTS OF THIS TALK

- Basics of femtoscopy and Lévy sources
- A sample of experimental results
- Recent phenomenological updates

PHENOMENOLOGY

- Recent experimental results
- Summary and outlook

6/28 EVENT BY EVENT SHAPE ANALYSIS WITH EPOS

- EPOS model: parton-based Gribov-Regge theory (PBGRT)
 - K.Werner et al., PRC82 (2010) 044904, PRC89 (2014) 064903, ...
 - Core-Corona division, viscous hydro evolution (vHLLE), hadronic cascades (UrQMD)
- $\sqrt{s_{NN}} = 200 \text{ GeV Au+Au}$ collisions generated by EPOS359
- Pair distribution calculated: $D(r_{LCMS}) = \int d\Omega dt D(t, r_x, r_y, r_z)$ angle-averaged radial source distribution of like-sign pion pairs

$$r_{LCMS} = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z_{LCMS})^2}; \Delta z_{LCMS} = \Delta z - \frac{\beta(\Delta t)}{\sqrt{1 - \beta^2}}; \beta = \frac{p_{z,1} + p_{z,2}}{E_1 + E_2}$$

- Investigated cases:
 - CORE, primordial pions only
 - CORE, decay products included
 - CORE+CORONA+UrQMD, primordial pions only
 - CORE+CORONA+UrQMD, decay products included

Kincses, Stefaniak, Csanád, Entropy 24 (2022) 308 [arXiv:2201.07962]

7/28 VARIOUS PARTICLE SETS COMPARED

8/28 AVERAGE LÉVY SCALE RVS TRANSVERSE MASS

9/28 AVERAGE LÉVY EXPONENT VS TRANSVERSE MASS

20/28 THE IMPORTANCE OF A KAON ANALYSIS

- Kaons: smaller cross-section, larger mean free path
- Heavier power-law tail?
- Prediction for π, K, p based on Humanic's Resonance Model (HRM): anomalous diffusion due to rescattering Humanic, Int.J.Mod.Phys. E15 (2006) 197 [nucl-th/0510049] Csanád, Csörgő, Nagy, Braz.J.Phys. 37 (2007) 1002 [hep-ph/0702032]

- Kaon HBT radii: m_T scaling or its violation for Lévy scale R?
- Prediction: $\alpha(p) > \alpha(\pi) > \alpha(K)$

21 /28 CONTENTS OF THIS TALK

Basics of femtoscopy and Lévy sources

PHENOMENO

- A sample of experimental results
- Recent phenomenology updates
- Recent experimental results
- Summary and outlook

22/28 KAON ANALYSIS AT STAR

- Data successfully described by Lévy fits
- Lévy-stability parameter α between I and 2
- Kaon and pion source of same shape at the same m_T ?
- Unlike anomalous diffusion expectation of $\alpha(K) < \alpha(\pi)$

23/28 KAON ANALYSIS AT PHENIX

- More detailed analysis performed at PHENIX
- Kaon and pion data seem comtabile at the same m_T
- Lévy scale R shows hydro type of scaling with m_T
 - R depending on m_T but not on particle type separately
- $\alpha(K) \ge \alpha(\pi)$, but anomalous diffusion suggests opposite
- Dominant mechanism?
- See poster by Márton Nagy 0

24,28 PION ANALYSIS AT SPS NA61/SHINE

- Lévy scale *R* of Ar+Sc and Be+Be:
 - Compatible with initial geometry factor 1.6
 - Decrease with m_T due to transverse flow?
- No m_T dependence in λ , in contrast to RHIC result can be turned off?
- Lévy index α : significant difference
- See next talk by Barnabás Pórfy

25/28 CHARGED HADRON ANALYSIS IN 5 TEV PB+PB

- Lévy index α
 - Far from Cauchy
 - Not exactly Gaussian
 - Closer to Gaussian for large N_{part}, unlike RHIC
- Lévy scale *R*: hydro scaling confirmed
 - In every centrality class
 - Despite non-Gaussianity
 - Hubble coefficient can be extracted:
 0.12-0.18 c/fm
- Correlation strength also analyzed
- Low-Q deviation cross-checked with Monte-Carlo: two-track acceptance
- See poster by Balázs Kórodi

26_{/28} STABILITY PARAMETER α FROM SPS TO LHC

- Different values for small and medium systems at SPS
- Medium and large systems: increasing trend from SPS to RHIC to LHC
- Compare to:

27/28 CONTENTS OF THIS TALK

Basics of femtoscopy and Lévy sources

PHENOMENO

- A sample of experimental results
- Recent phenomenology updates
- Recent experimental results
- Summary and outlook

liffusion

nomalous

diffusion

(Lévy fliaht)

28/28 CONCLUSIONS AND OUTLOOK

- Lévy sources from SPS to RHIC and LHC
 - Lévy α : between I and 2, increases with $\sqrt{s_{NN}}$?
 - Contrary to expectations, $\alpha(K) \ge \alpha(\pi)$
 - Lévy *R*: hydro scaling, despite not Gaussian
 - Lévy λ : signs of η' in-medium mass modification
- Possible reasons:
 - Jet fragmentation \rightarrow not dominant in AA collisions
 - **Critical phenomena** → maybe at lowest RHIC energies and SPS
 - Directional averaging \rightarrow source <u>is</u> (approx.) spherical in LCMS, 3D cross-check done
 - Event averaging → event-by-event simulations show Lévy
 - **Resonance decays** \rightarrow part of the reason, not enough alone
 - Hadronic rescattering, Lévy flight $\rightarrow \alpha(K) \ge \alpha(\pi)$ puzzling
 - Questions to be answered:
 - When measuring α , what effects need to be considered?
 - Can there be anomalous diffusion in the quark stage?
 - What is the role of finite size and finite time?

29 THANK YOU FOR YOUR ATTENTION

BACKUP

3 LÉVY EXPONENT α IN 200 GEV AU+AU AT RHIC

- Measured value far from Gaussian ($\alpha = 2$), inconsistent with expo. ($\alpha = 1$)
- Far from random field 3D Ising value at CEP ($\alpha = 0.5$)
- Approximately constant (at least within systematic uncertainties)
- What do models and calculations say?

Dec 6, 2022

32_{/28} CORRELATION STRENGTH λ: CORE/HALO

- Two-component core+halo source
 - Core: hydrodynamically expanding, thermal medium
 - Halo: long lived resonances ($\gtrsim 10 \text{ fm/c}, \omega, \eta, \eta', K_0^{\text{s}}, ...)$
 - Unresolvable experimentally
 - Define $f_C = N_{\text{core}}/N_{\text{total}}$
- True $q \rightarrow 0$ limit: C(0) = 2
- Apparently $C(q \rightarrow 0) \rightarrow 1 + \lambda$
- $\lambda(m_{\mathrm{T}}) = f_{C}^{2}(m_{\mathrm{T}})$

Bolz et al, Phys.Rev. D47 (1993) 3860-3870; Csörgő, Lörstad, Zimányi, Z.Phys. C71 (1996) 491-497

33/28 COLLISION ENERGY DEPENDENCE

- $\langle \alpha \rangle$ approximately monotonic versus $\sqrt{S_{NN}}$
 - No clear interpretation or understanding of this trend
 - Important w.r.t. shape averaging interpretation of $\alpha \neq 2$
- Lévy exponent α still far from conjectured CEP limit of 0.5
 - Very much dependent on m_T bin width, working on final results...

34,28 HOLE IN $\lambda(m_T)$: ALL MEASUREMENTS AT RHIC

• Hole apparent for $\sqrt{s_{NN}} \ge 39$ GeV, ~independently of centrality

- Due to reduced η' mass?
- Sign for chiral restoration?
- To be cross-checked with photons, dileptons, etc.
- Working on finalized PHENIX results

35/28 COHERENCE WITH THREE-PION LÉVY HBT

- Recall: two particle correlation strength $\lambda = f_c^2$ where $f_c = N_{core}/N_{total}$
- Generalization for higher order correlations: $\lambda_2 = f_C^2$, $\lambda_3 = 2f_C^3 + 3f_C^2$
- If there is partial coherence (p_c) :

$$\begin{split} \lambda_2 &= f_C^2 [(1-p_C)^2 + 2p_C(1-p_C)] \\ \lambda_3 &= 2f_C^3 [(1-p_C)^3 + 3p_C(1-p_C)^2] + 3f_C^2 [(1-p_C)^2 + 2p_C(1-p_C)] \end{split}$$

- Introduce core-halo independent parameter $\kappa_3 = \frac{\lambda_3 3\lambda_2}{2\sqrt{\lambda_2}^3}$
 - does not depend on f_C
 - $\kappa_3 = 1$ if no coherence
- Finite meson sizes?
 - Gavrilik, SIGMA 2 (2006) 074 [hep-ph/0512357]
- Phase shift (a la Aharonov-Bohm) in hadron gas?
 - Random fields create random phase shift, on average distorts Bose-Einstein correlations Csanád et al., Gribov-90 (2021) 261-273 [arXiv:2007.07167]

36/28 TEST OF CORE-HALO MODEL / COHERENCE

• Recall: $\kappa_3 = 1$ in pure core-halo model, $\kappa_3 \neq 1$ if coherence

37,28 ROLE OF EVENT AVERAGING?

- Event-averaged source also analyzed
- Not perfectly Lévy shape, very large χ^2
- Nevertheless: similar parameters achieved
 - Event averaged: $\alpha \approx 1.62, R \approx 9.15$ fm
 - Event-by-event: $\alpha \approx 1.66, R \approx 8.96 \text{ fm}$
- More reasonable approach for kaons
 - No event-by-event analysis possible for kaons

38/28 SOURCE OR PAIR DISTRIBUTION?

• Under some circumstances (thermal emission, no interactions, ...):

$$C_{2}(q,K) = \int S\left(r_{1},K + \frac{q}{2}\right) S\left(r_{2},K - \frac{q}{2}\right) |\Psi_{2}(r_{1},r_{2})|^{2} dr_{1} dr_{2}$$

$$\approx 1 + \left|\int S(r,K) e^{iqr} dr\right|^{2}$$

• Let us introduce the spatial pair distribution:

$$D(r,K) = \int S\left(\rho + \frac{r}{2}, K\right) S\left(\rho - \frac{r}{2}, K\right) d\rho$$

- Then the Bose-Einstein correlation function becomes: $C_2(q, K) \cong \int D(r, K) |\Psi_2(r)|^2 dr = 1 + \int D(r, K) e^{iqr} dr$
- Bose-Einstein correlations measure spatial pair distributions!
- Coulomb and strong Final State Interactions? Under control for Lévy sources Csanad, Lökös, Nagy, Phys. Part. Nuclei 51 (2020) 238 [arXiv:1910.02231] Kincses, Nagy, Csanad Phys. Rev. C102, 064912 (2020) [arXiv:1912.01381]

39/28 INTERACTIONS: THE COULOMB-EFFECT

• Plane-wave result, based on $\left|\Psi_2^{(0)}(r)\right|^2 = 1 + e^{iqr}$:

 $C_2(q,K) \cong \int D(r,K) \left| \Psi_2^{(0)}(r) \right|^2 dr = 1 + \int D(r,K) e^{iqr} dr$

- If there is interaction: $\Psi_2^{(0)}(r) \rightarrow \Psi_2^{(int)}(r_1, r_2)$
- For Coulomb:

$$\left|\Psi_{2}^{(C)}(r)\right|^{2} = \frac{\pi\eta}{e^{2\pi\eta}-1} \cdot \text{(complicated hypergeometric expression)}$$

• Direct fit with this, or the usual iterative Coulomb-correction:

 $C_{\text{Bose-Einstein}}(q)K(q), \text{ where } K(q) = \frac{\int D(r,K) |\Psi_2^{(C)}(r)|^2 dr}{\int D(r,K) |\Psi_2^{(0)}(r)|^2 dr}$

- Complication: need for integrating power-law tails
- In this analyis: assuming spherical source
- Parametrization possible Csanád, Lökös, Nagy, Phys.Part.Nucl. 51 (2020) 238

40/28 ROLE OF THE STRONG INTERACTION

- In case of other interactions or not identical bosons, the formula still works: $C_2(q,K) \cong \int D(r,K) |\Psi_2(r)|^2 dr$
- Pair wave function determines $D \leftrightarrow C_2$ connection
- Mesons, baryons: strong interaction; fermions: anticorrelation
- Non-identical pairs: interaction modifies wave function

6.0 000 B.c

0.7

0.6

0.5

0.4

0.3

0.3

4 J 28 STRONG INTERACTION FOR PION PAIRS

 $..\langle \mathbf{R}_{out}\rangle_{\lambda_{i-1}\alpha_{i-1}} = \mathbf{R}_{in}$

6

8

- Additional potential appearing
- Possible handling: strong phase shift, Modify s-wave component in wave func. R. Lednicky, Phys. Part. Nucl.40, 307 (2009)
- Small difference in case of pions

(a)

0.9

0.7 0.8

0.6

0.5

 $\langle \lambda_{out} \rangle_{\mathsf{R}_{in} \alpha_{in}} \approx 0.95 \lambda_{in}$

• Few percent modification in λ , α Kincses, Nagy, Csanád, Phys.Rev.C 102 (2020) 064912

 $(R_{out})_{\lambda_{w}}$

Dec 6, 2022

42,28 HBT MEASUREMENTS AND THE PHASE DIAGRAM

- LHC: measurement at CMS
 - 2-5 ATeV energy, p+p & Pb+Pb
- RHIC: measurement at PHENIX+STAR
 - I0-200 AGeV energy, Au+Au
- SPS: measurement at NA61
 - 17 AGeV energy, Be+Be
- Phase diagram can be investigated

43,28 A CROSS-CHECK: 3D LÉVY FEMTOSCOPY

- Femtoscopy done in 3D: Bertsch-Pratt pair frame (out/side/long coordinates)
- Physical parameters: $R_{out/side/long} \lambda$, α measured versus pair m_T
- Fit in this case: modified log-likelihood (small statistics in peak range)

44,28 3D VERSUS ID: STRENGTH λ AND SHAPE α

- Compatible with ID (Q_{LCMS}) measurement of PRC97(2018)064911
- Small discrepancy at small mT: due to large Rlong at small mT?

45,28 3D VERSUS 1D: STRENGTH λ AND SHAPE α

- Compatible with ID (Q_{LCMS}) measurement of PRC97(2018)064911
- Small discrepancy at small mT: due to large Rlong at small mT?

46/28 LÉVY SCALES IN 3D

- Compatibility with ID Lévy analysis
- Similar decreasing trend as Gaussian HBT radii, but it is not an RMS radius!
 - There is no 2^{nd} moment (variance or root mean square) for Lévy distributions with $\alpha < 2!$
- Asymmetric source for small m_T, validity of Coulomb-approximation?

47_{/28} OPEN QUESTIONS

- Collision energy and centrality dependence of Lévy parameters?
 - Non-monotonicity in $\alpha(\sqrt{s_{NN}})$ or α (centrality)?
 - Hole in $\lambda(m_T)$ at low $\sqrt{s_{NN}}$? Really due to η' ?
- Reason for the appearance of Lévy distributions for pions?
 - What is the Lévy exponent for kaons?
 - Kaons have smaller total cross-section thus larger mean free path, heavier tail?
 - Does m_T scaling hold for Lévy scale R?
- Correlation strength versus core-halo picture: are there other effects?
 - Three-particle correlations may show if coherence or other effects play a role
 - Other effects may also play a role (finite meson sizes, random field phase shift, etc)

48/28 RESULTS AT NA61/SHINE

- Be+Be collisions at 150 AGeV beam momentum (17.3 AGeV in c.m.s.)
- Lévy fits describe correlation functions
 - Shape parameter α : far from Gaussian and CEP conjecture
 - Strength parameter λ : nearly constant as previous SPS results, unlike RHIC
 - Spatial scale R: weakly decreasing trend \rightarrow hydro
- Plans: particle identification, Ar+Sc analysis, different energies

49,28 LÉVY HBT MEASUREMENTS

50/28 THE EPOS MODEL

- Energy conserving quantum-mechanical multiple scattering approach, based on Partons ladders, Off-shell remnants, and Splitting of parton ladders
 - K.Werner et al., PRC82 (2010) 044904, PRC89 (2014) 064903, ...
- Based on Monte-Carlo simulation
- Theoretical framework: parton-based Gribov-Regge theory (PBGRT)

SANAL

- Three main parts of the model:
 - Core-Corona division (based on dE/dx of string segments)
 - Hydrodynamical evolution (vHLLE 3D+1 viscous hydro)
 - Hadronic cascades (UrQMD afterburner)
- Effects/components to be turned on or off (on top of Core):
 - Corona
 - Rescattering
 - Decays

5 J 728 TWO-PARTICLE SPATIAL CORRELATIONS

• Object to be investigated: two-particle source

$$D(r,K) = \int d^4 \rho S\left(\rho + \frac{r}{2}, K\right) S\left(\rho - \frac{r}{2}, K\right)$$

- Experimental results measure power-law tails, Lévy shapes
 - Measure momentum-space correlations, reconstruct D(r) or fit its parameters
- Why do these Lévy shapes appear?
 - What physics does contribute to it? Rescattering, decays?
 - What role does event averaging have in it? Cimerman, Plumberg, Tomasik, Phys.Part.Nucl. 51 (2020) 282, PoS ICHEP2020 538
 - What do specific α values mean?
- Event generator models (like EPOS) direct access to pair-source!
 - Phenomenological investigations of D(r) possible
 - Effects can be turned off or on, investigated separately

52,28 EXAMPLE SINGLE EVENT, CORE ONLY

Gaussian shape without decays, additional structure with decays

53,28 EXAMPLE EVENT, CORE+CORONA+URQMD

- Investigating D(r)
 event-by-event
- Lévy-fits provide good description (2-100 fm range)
- Repeat such fits for thousands of events

• Extract α , R distribution

54,28 DISTRIBUTION OF α , R PARAMETERS

- Normal distribution of α , *R* for given centrality & k_T
- Extract mean and std.dev,
- Investigate centrality & k_T dependence
- kT dependence investigated around the peak of the pair-kT distr. to have adequate stat.

55/28 CONCLUSIONS AND OUTLOOK

- Lévy fits done to event-by-event EPOS spatial distributions, good description
- Power-law tail strongly affected by rescattering and decays
- EPOS3 CORE+CORONA+UrQMD Au+Au@√s_{NN} = 200 GeV • Lévy *R* in EPOS: $\pi^{+}\pi^{+}+\pi^{-}\pi^{-}$, $|\eta| < 1$ $\widehat{\mathbf{x}}$ similar to data 9 Lévy α in EPOS: 8 larger than data primordial pions primordial+decay pions Details in: 6 $\langle \alpha \rangle$ • 0-5% **5**-10% Entropy 24 (2022) 308 ***** 10-20% 20-30% [arXiv:2201.07962] 1.6 • Next steps: Multiple dimensions 1.5 Different particle species primordial+decay pions primordial pions Correlation function 0.25 0.35 0.25 0.3 0.35 0.3 0.4 0.4 m_{τ} [GeV/c²] m_{τ} [GeV/c²]

56/28 SUMMARY

- D(r) calculated in EPOS evtby-evt
- Lévy fits done evt-by-evt
- Non-Gaussianity in single events
- Extracting mean, & std.dev. of R, α
- *m_T* & centrality dependence

Dec 6, 2022

57,28 A CROSS-CHECK: THREE-PION LÉVY HBT

- Recall: two particle correlation strength $\lambda = f_c^2$ where $f_c = N_{core}/N_{total}$
- Generalization for higher order correlations: $\lambda_2 = f_C^2$, $\lambda_3 = 2f_C^3 + 3f_C^2$
- If there is partial coherence (p_c) :

$$\lambda_2 = f_C^2 [(1 - p_C)^2 + 2p_C (1 - p_C)]$$

$$\lambda_3 = 2f_C^3 [(1 - p_C)^3 + 3p_C (1 - p_C)^2] + 3f_C^2 [(1 - p_C)^2 + 2p_C (1 - p_C)]$$

- Introduce core-halo independent parameter $\kappa_3 = \frac{\lambda_3 3\lambda_2}{2\sqrt{\lambda_2}^3}$
 - does not depend on f_C
 - $\kappa_3 = 1$ if no coherence
- Finite meson sizes?
 - Gavrilik, SIGMA 2 (2006) 074 [hep-ph/0512357]
- Phase shift (a la Aharonov-Bohm) in hadron gas?
 - Random fields create random phase shift, on average distorts Bose-Einstein correlations Csanád et al., Gribov-90 (2021) 261-273 [arXiv:2007.07167]

58,28 TEST OF CORE-HALO MODEL / COHERENCE

• Recall: $\kappa_3 = 1$ in pure core-halo model, $\kappa_3 \neq 1$ if coherence

59,28 SHAPE ANALYSIS AT STAR

- Gaussian fit: unacceptable description
- Levy fit somewhat better, but still additional effects present
- Low Q behavior not captured by any of the two

D. Kincses, Phys. Part. Nuc. 51 (2020) 267-269