Deblurring 3D Characteristics of Heavy-Ion Collisions

Pawel Danielewicz

Facility for Rare Isotope Beams Michigan State University

Zimanyi School Winter Workshop on Heavy Ion Physics Budapest, Hungary

December 5-9, 2022

< < >> < </>

프 🖌 🖌 프

Paradigm: Triple-Differential Yields from Data

Distributions for *Fixed Direction of Reaction Plane* from Theory and Experiment

no control over plane

What is it?!

Deblurring

Paradigm: Triple-Differential Yields from Data

Distributions for *Fixed Direction of Reaction Plane* from Theory and Experiment

some control, v_n

Still not clear what the system is...

Paradigm: Triple-Differential Yields from Data

Distributions for *Fixed Direction of Reaction Plane* from Theory and Experiment

no control over plane

some control

Claim: You can go from center to right panel through deblurring

Deblurring for Nuclei

Conclusions

Deblurring by Example

Budd, Crime Fighting Math, plus.maths.org magazine

Blurred Photo of Moving Car

Deblurred

Photo of Parked Car

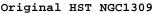
Fast Moving

Lu *et al.*, IEEE Trans Image Processing 25, 2311 (2016)

Deblurring in Optical Microscopy

Before and After Nearest Neighbor Deconvolution Analysis

(a) Figure 1 (b) https://micro.magnet.fsu.edu/primer/ digitalimaging/deconvolution

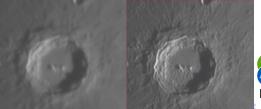


Deblurring

Deblurring in Astronomy

Much advancement in astronomy, in particular spurred by the

Hubble Space Telescope (HST) flaw Carasso, NISTIR 7632 (2009)



2

Linnik deblur

Before and after deblurring of image of lunar crater Copernicus https://en.wikipedia.org/ wiki/Deconvolution

Detector efficiency ϵ , *n* measured ptcle number, *N* actual number

 $N\simeq \frac{1}{\epsilon}n$

Typical energy loss in thick target $\overline{\Delta E}$ for detected particle

 $E_{\rm prod} \simeq E_{\rm det} + \overline{\Delta E}$

General problem stated probabilistically, with $P(\zeta|\xi)$ - probability to measure ptcle characteristic to be ζ when it is actually ξ

$$n(\zeta) = \int \mathrm{d}\xi \, P(\zeta|\xi) \, N(\xi)$$

For small distortions, *P* finite only when ζ little different from ξ . Optical terminology: *P* - blurring or transfer function.

Conclusions

Bayesian Deblurring

Distorted $n(\zeta)$ measured, while pristine $N(\xi)$ sought:

 $n(\zeta) = \int \mathrm{d}\xi \, P(\zeta|\xi) \, N(\xi)$

 $P(\zeta|\xi)$ - probability that ptcle with ζ detected while it really has characteristic ξ , understood given the method/apparatus, can be simulated (Geant4) & can depend on *N*

 $Q(\xi|\zeta)$ - complementary probability that ptcle has characteristic ξ while measured at ζ - unknown.

Bayesian relation: number of times ptcle has characteristic in d ξ while measured in d ζ is

 $P(\zeta|\xi) N(\xi) d\xi d\zeta = Q(\xi|\zeta) n(\zeta) d\xi d\zeta$ Hence $N(\xi) = \frac{\int d\zeta Q(\xi|\zeta) n(\zeta)}{\int d\zeta' P(\zeta'|\xi)}, \quad Q(\xi|\zeta) = \frac{P(\zeta|\xi) N(\xi)}{\int d\xi' P(\zeta|\xi') N(\xi')}$

Richardson-Lucy method solves eqs iteratively till stabilization

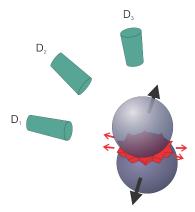
O Conclusion

Richardson-Lucy (RL) Method from Astronomy

Iterative method, r - iteration index

$$n^{(r)}(\zeta) = \int d\xi P^{(r)}(\zeta|\xi) N^{(r)}(\xi)$$
$$A^{(r)}(\xi) = \frac{\int d\zeta \frac{n(\zeta)}{n^{(r)}(\zeta)} P^{(r)}(\zeta|\xi)}{\int d\zeta' P^{(r)}(\zeta'|\xi)}$$
$$N^{(r+1)}(\xi) = A^{(r)}(\xi) N^{(r)}(\xi)$$

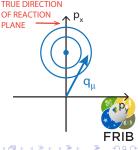
 $\xi \& \zeta$ are binned (pixelated), n & N are arrays and P transformation (transfer) matrix from the method/apparatus. Deblurring amounts to iterative multiplication of arrays by matrices + matrix reconstruction. Typical start: $N^{(1)}(\xi) = n(\xi)$ Richardson JOSA 62(1972)55 ; Lucy AJ 79(1974)745 https://en.wikipedia.org/wiki/Richardson-Lucy_deconvolution PD&Kurata-Nishimura PRC105(2022)034608 Other methods include Fourier transformation



3D Nature of Collisions of Heavy Nuclei Transport simulation of 2 GeV/nucl Au + Au at b = 6 fm PD et al. Science298(2002)1592 z - beam, x - reaction plane x (fm)10 - 10 010 - 10 010 - 10 010 - 10 0-10010 30 f -10010 - 10 010 - 10 0 10 - 10 0 10 - 10 010 x (fm)figure by Bill Lynch Rich 3D structure, but no control over the reaction-plane direction in experiment

Deblurring

Estimating Reaction-Plane Direction


Any direct record of 3D characteristics will be blurred!

Plane direction estimated with

$$\mathbf{q}_{\mu} = rac{1}{N}\sum_{
u
eq\mu}\omega_{
u}\,\mathbf{p}_{
u}^{\perp} \qquad \omega_{
u} = egin{cases} +1, & ext{if}\, oldsymbol{p}_{
u}^{z} > 0 \ -1, & ext{if}\, oldsymbol{p}_{
u}^{z} < 0 \end{cases}$$

N - measured particle multiplicity; other ptcles in the event used as reference for μ

PD&Odyniec PLB157(85)146 Problem: Reference vector **q**_µ Gaussian fluctuates around true plane direction

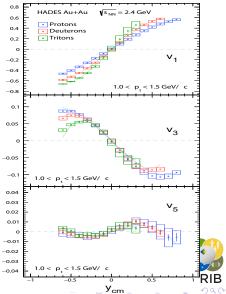
Current Solution: Angular Moments of Distributions

Solution: average angular moments (azimuthal Fourier coefficients)

 $\mathbf{v}_{\mathbf{n}} = \langle \cos \mathbf{n} \phi \rangle$

ϕ - angle relative to true reaction plane

Voloshin&Zhang ZfPhC70(1996)665


v_n derived from average scalar products/contractions, e.g.,

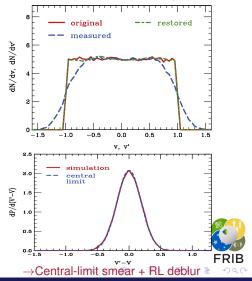
 $\left< \mathbf{p}_{\mu}^{\perp} \cdot \mathbf{q}_{\mu} \right> \simeq \boldsymbol{\rho}^{\perp} \left< \boldsymbol{q}^{\mathbf{x}} \right> \left< \cos \phi \right>$

for different p^{\perp} , y and ptcle ID

Problem: unclear physics in v_n especially for higher n

1.23 GeV/nucl Au + Au $b \simeq 6$ fm HADES PRL125(2020)262301

Danielewicz

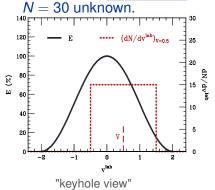

Schematic 1D Model

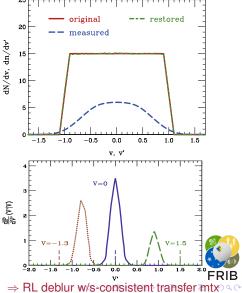
Proposition: Carry out as good determination of 3D info as you can

& refine with deblurring. First 1D deblurring test. Projectile at unknown velocity V deexcites emitting N = 10ptcles distributed with box-like dN/dv in projectile cm. Task: Measuring ptcles in lab, determine dN/dv. Cm velocity V' estimated from remaining ptcles, so V' & dN/dv'smeared:

$$\frac{\mathrm{d}N}{\mathrm{d}v'} = \int \mathrm{d}V' \,\frac{\mathrm{d}P}{\mathrm{d}V'} \,\frac{\mathrm{d}N}{\mathrm{d}v}$$

PD&Kurata-Nishimura PRC105(2022)034608

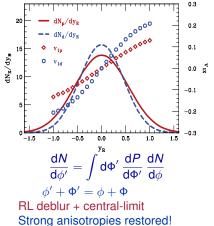


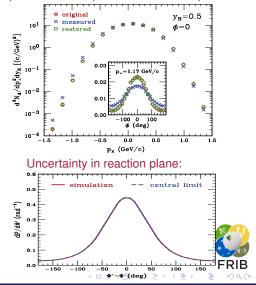

Deblurring

Danielewicz

1D Model with Detector Inefficiencies

Again projectile at unknown velocity V deexcites emitting N particles, but now measured w/detector of strongly changing efficiency E. Find dN/dv.

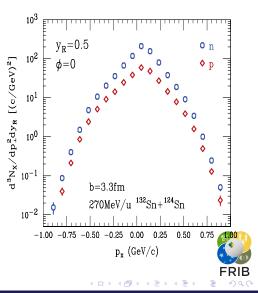



Danielewicz

3D Model for Collisions

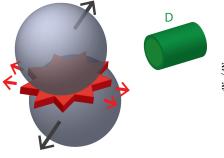
Customary thermal model with flow, N, d, t, ³He, ⁴He. $\langle Z_{Tot} \rangle = 50$ Rapidity dstr, temperature & flow typical for semicentral collisions at 300 MeV/nucl

Triple differential spectrum in reaction plane:

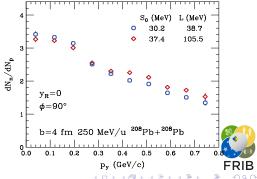


Deblurring

Why 3D Characteristics?


Transport-model simulation of 270 MeV/nucl ¹³²Sn + ¹²⁴Sn collision at b = 3.3 fm 3-differential spectrum for the same conditions as in thermal model, but looks very different. Not parabolic, i.e., Gaussian, cusps, different left-right slopes, knees. Steeper slope on spectator side, softer on participant. Physics??

Averaged over ϕ , the spectrum would look thermal and no obvious sign in v_n ...



Symmetry energy at $\rho > \rho_0$?

Deblurring allows to effectively look into the heart of matter, unobscured high-density central region in the collisions

Transport-model simulations of 250 MeV/nucl ²⁰⁸Pb + ²⁰⁸Pb collisions w/medium-soft & stiff symmetry energy. n/p yield ratio at $\phi = 90^{\circ}$, perp to reaction plane, and $\gamma_{cm} = 0$.

- Deblurring: strong record in optics & fields that heavily rely on optics: forensic science, astronomy & microscopy
- Deblurring can expand the reach of measurement ahead of any comparison to theory
- No reason for deblurring to confine to photons and not extend to other particles - its domain are probabilities
- Deblurring should effectively allow to control reaction plane in energetic heavy-ion collisions, hopefully expand horizons
- Nuclear problems where deblurring started producing results: ${}^{26}O \rightarrow {}^{24}O + n + n$ decay, source-imaging from 2-particle correlations in heavy-ion collisions, triple-differential distributions in heavy-ion collisions

PD&Kurata-Nishimura PRC105(2022)034608 Berkowitz Physics 15(2022)s26 Supported by US Department of Energy under Grant US DE-SC0019209

