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Hadronic Collisions in Experiment

▶ Relativistic fluid dynamics is indispensible when studying the
dynamics of the QGP fireball produced in HICs.

▶ Realistic models account for the QCD equation of state; realistic
transport coefficients; chiral phase transition (hadronization).



Hydro vs Kinetic theory
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Nature Comput. Sci. 2 (2022) 641]

▶ Hydro takes the above into account, but it breaks down far from eq.
▶ Kinetic theory overcomes this limitation, but realistic simulations are

expensive due to C[f ]. AMPT: He, Edmonds, Lin, Liu, Molnar, Wang [PLB 753 (2016) 506]
BAMPS: Greif, Greiner, Schenke, Schlichting, Xu [PRD 96 (2017) 091504]

▶ RTA: C[f ] ∼ − 1
τR

(fk − f0k) ⇒ 1 − 2 o.m. faster than, e.g.,
BAMPS. VEA, Busuioc, Fotakis, Gallmeister, Greiner [PRD 104 (2021) 094022]

▶ τR fixes the IR limit of RTA by matching e.g. η to that of C[f ] ⇒
good agreement with BAMPS.

https://doi.org/10.1038/s43588-022-00333-x


RTA vs BAMPS

[Ambrus,, Blaga, PRC 98 (2018) 035201]

▶ τR governs all dissipative transport ⇒ can fix only shear (η) or
diffusion (κ), but not both.

▶ Fixing η via τR gives good agreement with BAMPS for πµν but qµ

is not captured correctly.
▶ Aim of this work: Extend RTA with extra parameters allowing

multiple transport coefficients to be controlled independently.

https://doi.org/10.1103/PhysRevC.98.035201


BGK model
▶ In non-relativistic kinetic theory, the RTA was proposed by

Bhatnagar, Gross and Krook (BGK): [Bhatnagar, Gross, Krook, Phys. Rev. 94 (1954) 511]

CBGK[f ] = − 1
τR

(fk − f0k), f0k = ne−ξ2/2mkBT

(2πmkBT )3/2 , (1)

where ξ = p − mu is the peculiar momentum.
▶ Applying the Chapman-Enskog expansion gives

δfk ≡ fk − f0k = −τR

(
∂

∂t
+ k

m
· ∇

)
f0k. (2)

▶ At first order, πij = Tij − Pδij and q are

πij =
∫

d3k
ξiξj

m
δfk ≃ −2ησij , (3a)

q =
∫

d3k
ξ2

2m

ξ

m
δfk ≃ −λ∇T, (3b)

where σij = ∂(iuj) − 1
3 (∇ · u)δij is the shear tensor, while
η = τRP, λ = cpτRP, (4)

where cp = 5kB/2m ≡ specific heat at constant P of the
monatomic ideal gas.

https://doi.org/10.1103/PhysRev.94.511


Shakhov model [Shakhov, Fluid Dyn. 3 (1968) 112]

[Ambrus,, Sofonea, PRE 86 (2012) 016708]

▶ In BGK, Pr = cpη

λ
= 1.

▶ Hard-sphere ideal gas: Pr = 2
3 .

▶ The Shakhov model employs
CS[f ] = − 1

τR
(fk − fSk) with

fSk = f0k(1 + Sk), Sk = 1 − Pr
PkBT

(
ξ2

5mkBT
− 1

)
q · ξ. (5)

▶ Comparison with DSMC validates Shakhov for small Kn.

https://doi.org/10.1007/BF01016254
http://dx.doi.org/10.1103/PhysRevE.86.016708


Anderson-Witting model
▶ The Anderson & Witting RTA reads [Anderson, Witting, Physica 74 (1974) 466]

kµ∂µfk = CAW[f ], CAW[f ] = −Ek

τR
(fk − f0k), (6)

where Ek = kµuµ and f0k is the equilibrium distribution.
▶ The macroscopic quantities Nµ and T µν are obtained from fk via

Nµ =
∫

dK kµ fk, T µν =
∫

dK kµkνfk, (7)

with dK = g d3k/[k0(2π)3] being the Lorentz-covariant integration
measure and g is the degeneracy factor.

▶ Imposing ∂µNµ = ∂νT µν = 0 requires Landau matching:

n = n0, e = e0, T µνuν = euµ, (8)

▶ In equilibrium, we have

Nµ
0 = nuµ, T µν

0 = euµuν − P∆µν , (9)

where ∆µν = gµν − uµuν .

httsp://doi.org/10.1016/0031-8914(74)90355-3


Chapman-Enskog expansion
▶ We are now interested to obtain constitutive relations for the

non-equilibrium quantities

Nµ − Nµ
0 = V µ, T µν − T µν

0 = −Π∆µν + πµν . (10)

▶ Employing the Chapman-Enskog procedure gives

δfk ≡ fk − f0k = − τR

Ek
kµ∂µf0k, (11)

such that

Π = −ζRθ, V µ = κR∇µα, πµν = 2ηRσµν . (12)

▶ ζR, κR and ηR are given by

ζR = m2

3 τRα
(0)
0 , κR = τRα

(1)
0 , ηR = τRα

(2)
0 . (13)

where α
(ℓ)
0 are τR-independent thermodynamic functions.



Shakhov-like extension [Ambrus,, Molnár, under review]

▶ ζ, η and κ are governed by the same parameter, τR.

▶ We consider a Shakhov-like extension:

CS[f ] = −Ek

τR
(fk − fSk), (14)

where fSk → f0k as δfk = fk − f0k → 0.

▶ The cons. eqs. ∂µNµ = ∂νT µν = 0 imply:

uµNµ = uµNµ
S , uνT µν = uνT µν

S , (15)

which allows for plenty of degrees of freedom (δn, δe, W µ, etc).

▶ For simplicity, we stick to the Landau matching conditions:
δn = δe = 0, T µνuν = euµ.



Shakohv-like extension
▶ Employing the Chapman-Enskog procedure gives

δfk − δfSk = − τR

Ek
kµ∂µf0k, (16)

leading to

Π − ΠS = −ζRθ, V µ − V µ
S = κR∇µα, πµν − πµν

S = 2ηRσµν .
(17)

▶ We seek to replace ζR etc by independent transport coefficients:

Π ≃ −ζSθ, V µ ≃ κS∇µα, πµν ≃ 2ηSσµν ,

ζS = τΠ

τR
ζR, κS = τV

τR
κR, ζS = τπ

τR
ηR. (18)

▶ Eq. (18) can be obtained from Eq. (17) when

ΠS = Π
(

1 − τΠ

τR

)
, V µ

S = V µ

(
1 − τV

τR

)
,

πµν
S = πµν

(
1 − τπ

τR

)
. (19)



Minimal δfSk
▶ Writing fSk = f0k + δfSk, we require:ρS,0

ρS,1
ρS,2

 =
∫

dK

 1
Ek
E2

k

 δfSk =

−3ΠS/m2

0
0

 ,

(
ρµ

S,0
ρµ

S,1

)
=

∫
dK

(
1

Ek

)
k⟨µ⟩δfSk =

(
V µ

S
0

)
,

ρµν
S,0 =

∫
dKk⟨µkν⟩δfk = πµν

S . (20)

▶ Thus, δfk = f0kf̃0kSk with can be written as1

Sk = − 3Π
m2

(
1 − τR

τΠ

)
H(0)

k0 + kµV µ

(
1 − τR

τV

)
H(1)

k0

+ kµkνπµν

(
1 − τR

τπ

)
H(2)

k0 , (21)

where the functions H(ℓ)
k0 are identical to those used in constructing

δfk in the 14-moment approximation. [DNMR, PRD 85 (2012) 114047]

1f̃ = 1 − af and a = 0, 1 and −1 for classical, F-D and B-E statistics, respectively.

https://doi.org/10.1103/PhysRevD.85.114047


First-order model
▶ Specifically, H(ℓ)

k0 must satisfy:∫
dK f0kf̃0k

 1
Ek
E2

k

 H(0)
k0 =

1
0
0

 ,

1
3

∫
dK f0kf̃0k

(
1

Ek

)
(∆αβkαkβ)H(1)

k0 =
(

1
0

)
,

2
15

∫
dK f0kf̃0k(∆αβkαkβ)2H(2)

k0 = 1. (22)

▶ The lowest-order polynomials satisfying these relations are

H(0)
k0 = G33 − G23Ek + G22E2

k
J00G33 − J10G23 + J20G22

,

H(1)
k0 = J31Ek − J41

J21J41 − J2
31

, H(2)
k0 = 1

2J42
, (23)

where Gnm = Jn0Jm0 − Jn−1,0Jm+1,0, while

Jnq = (−1)q

(2q + 1)!!

∫
dK En−2q

k
(
∆αβkαkβ

)q
f0kf̃0k. (24)



Entropy production

▶ In kinetic theory, the entropy current is given by

Sµ = −
∫

dK kµ

(
fk ln fk + 1

a
f̃k ln f̃k

)
. (25)

▶ In the Shakhov model, kµ∂µf = CS[f ] and

∂µSµ = −
∫

dK CS[f ] ln fk

f̃k

= 1
τR

∫
dK Ek(δfk − δfSk) ln fk

f̃k
. (26)

▶ Analyzing the entropy production ∂µSµ for generic fk is difficult,
but one can estimate it close to equilibrium.



Entropy production

▶ When ϕk = δfk/f0kf̃0k and Sk = δfSk/f0kf̃0k are small,

∂µSµ ≃
∫

dK
Ek

τR

[
(δfk − δfSk) ln f0k

f̃0k
+ δfk(ϕk − Sk)

]
. (27)

▶ Using ln(f0k/f̃0k) = α − βEk, the first term vanishes,∫
dK (fk − fSk)(αEk − βE2

k) = 0, (28)

...by virtue of uµ(Nµ − Nµ
S ) = uµuν(T µν − T µν

S ) = 0.
▶ Approximating ϕk − Sk ≃ − τR

Ek
kµ∂µ(α − βEk) leads to

∂µSµ ≃ β

ζS
Π2 − 1

κS
VµV µ + β

2ηS
πµνπµν ≥ 0. (29)

▶ Thus, for small deviations from equilibrium, the Shakhov model
satisfies the second law of thermodynamics.



Example 1: Bjorken flow

▶ We first consider the 0 + 1-dimensional boost-invariant Bjorken
expansion of a classical ideal gas of massive particles (a = 0) with
particle non-conservation (α = 0).

▶ In this case, T µν = diag(e, PT , PT , τ−2PL) with

PT = P + Π − πd

2 , PL = P + Π + πd. (30)

▶ In second-order fluid dynamics, we have:
[Denicol, Florkowski, Ryblewski, Strickland, PRC 90 (2014) 044905]

τ ė + e + PL = 0, (31a)

τ Π̇ +
(

δΠΠ

τΠ
+ τ

τΠ

)
Π + λΠπ

τΠ
πd = − ζ

τΠ
,

τ π̇d +
(

δππ

τπ
+ τππ

3τπ
+ τ

τπ

)
πd + 2λπΠ

3τπ
Π = − 4η

3τπ
. (31b)

▶ We employ the Shakhov model to control ζ independently from η.

https://doi.org/10.1103/PhysRevC.90.044905


Shakhov model: ζ vs. η
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▶ Setting τR = τΠ for definiteness, the Shakhov distribution becomes

fSk = f0k

[
1 + β2kµkνπµν

2(e + P )

(
1 − τΠ

τπ

)]
. (32)

▶ Left panel: τπ is fixed and τΠ is varied using the Shakhov model.
▶ Right panel: τΠ is fixed and τπ is varied using the Shakhov model.
▶ m = 1 GeV; τ0 = 0.5 fm; β−1

0 = 0.6 GeV; For τπ = 0.5 fm, 4πη/s ≃ 3.3 at τ = τ0.



Example 2: Sound waves damping
▶ We now consider an infinitesimal perturbation propagating in an

ultrarelativistic fluid at rest.
▶ Writing uµ ≃ (1, 0, 0, δv), e = e0 + δe and n = n0 + δn, we have

∂tδn + n0∂zδv + ∂zδV =0,

∂tδe + (e0 + P0)∂zδv =0,

(e0 + P0)∂tδv + ∂zδP + ∂zδπ =0,

τV ∂tδV + δV + κ∂zδα − ℓV π∂zδπ =0,

τπ∂tδπ + δπ + 4η

3 ∂zδv + ℓπV ∂zδV = 0, (33)

where δV = V z and δπ = πzz/γ2.
▶ In RTA, ℓV π = ℓπV = 0. [Ambrus,, Molnár, Rischke, PRD 106 (2022) 076005]

▶ We track the time evolution of the amplitudes

δ̃V = 2
L

∫ L

0
dz δV cos(kz), δ̃π = 2

L

∫ L

0
dz δπ sin(kz). (34)

▶ We employ the Shakhov model to control κ independently from η.

https://doi.org/10.1103/PhysRevD.106.076005


Sound waves: linear modes
▶ Inserting A(t, x) = A0 +

∫ ∞
−∞ dk

∑
ω e−i(ωt−kz)δAω(k) gives

−3 ω
k 4P0 0 0 0

1 − 4ω
k P0 1 0 0

0 4η
3 − i

k − ω
k τπ 0 0

0 n0 0 − ω
k 1

− 3κ
P0

0 −ℓV π
4κ
n0

− i
k − ω

k τV




δPω(k)
δvω(k)
δπω(k)
δnω(k)
δVω(k)

 = 0.

▶ Thanks to ℓV π = ℓπV = 0, the shear and diffusion sectors decouple:

(k2 − 3ω2)(1 − iωτπ) − ik2ω

P0
η =0, ω(1 − iωτV ) + 4ik2

n0
κ =0.

▶ The shear and diffusion modes are:

ω±
a = ±|k|cs;a − iξa, ωη = −iξη; ω±

κ = −iξ±
κ ,

cs;a ≃ 1√
3

, ξa ≃ k2η

6P0
, ξη ≃ 1

τπ
− k2η

3P0
,

ξ−
κ ≃ 4k2κ

n0
, ξ+

κ ≃ 1
τV

− 4k2κ

n0
. (35)



Shakhov model: κ vs. η
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▶ Setting τR = τπ for definiteness, the Shakhov distribution becomes

fSk = f0k

[
1 +

kµV µ

P
(βEk − 5)

(
1 −

τπ

τV

)]
. (36)

▶ At initial time, n(0, z) = n0 + δn0 cos(kz) and v(0, z) = δv0 sin(kz).
▶ The approximate solution is [Ambrus,, PRC 97 (2018) 024914.]

δ̃V ≃
4kκδn0

τV n0

e−ξ
+
κ t − e−ξ

−
κ t

ξ+
κ − ξ−

κ

,

δ̃π ≃ −
4η

3
δv0

{
e

−ξat

[
cos(kcst) −

ξa

kcs

sin(kcst)
]

− e
−t/τπ

}
. (37)

https://doi.org/10.1103/PhysRevC.97.024914


Conclusions

▶ The Shakhov model was generalized for the relativistic
Anderson-Witting RTA, allowing ζ, κ and η to be controlled
independently.

▶ Numerical simulations of the Bjorken flow and of sound waves
damping confirmed that the model is robust.

▶ The Shakhov model can be straightforwardly extended to higher
orders, allowing also the second-order transport coefficients to be
controlled.

▶ This work was supported through a grant of the Ministry of
Research, Innovation and Digitization, CNCS - UEFISCDI, project
number PN-III-P1-1.1-TE-2021-1707, within PNCDI III.



Appendix



Arbitrary Shakhov matrix
▶ The model can be extended to control 2nd-order transport coeffs..
▶ Systematic extensions can be obtained by writing in general

Sk =
∞∑

ℓ=0

Nℓ∑
n=−sℓ

ρµ1···µℓ

S;n E−sℓ

k k⟨µ1 · · · kµℓ⟩H̃
(ℓ)
k,n+sℓ

, (38)

where Nℓ ≡ expansion order and sℓ ≡ basis-shift allowing to access
negative-order moments.

▶ The Shakhov irreducible moments are taken as

ρµ1···µℓ

S;r =
Nℓ∑

n=−sℓ

(
δrn − τRA(ℓ)

S;rn

)
ρµ1···µℓ

n . (39)

with arbitrary entries A(ℓ)
S;rn defined for −sℓ ≤ r, n ≤ Nℓ.

▶ The irreducible moments Cµ1···µℓ

S;r−1 of the collision term can be
written as

Cµ1···µℓ

S;r−1 = −
∑

n

A(ℓ)
rn ρµ1···µℓ

n , A(ℓ)
rn =


1

τR
δrn A(ℓ)

<;rn 0
0 A(ℓ)

S;rn 0
0 A(ℓ)

>;rn
1

τR
δrn

 .

(40)



(N1, N2, s1, s2) = (1, 0, 0, 1) model

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

(δP0/P0 = 10−3)

(kτR = 0.125)

−
10
0
×
Ṽ
d
(t
)/
δP

0

kt

`V π/τRβ = −0.7
−0.35

0
0.35
0.7

Hydro

−8

−6

−4

−2

0

2

4

6

8

0 5 10 15 20 25 30

(δn0/0 = 10−3)

(kτR = 0.25)

10
3
×
π̃
d
(t
)/
δn

0

kt

β`πV /τR = −0.7
−0.35

0

0.35
0.7

Hydro

▶ We consider a simple extension of the tenso matrix to cover the
r = −1 row.

▶ Setting A(1)
S = 1/τV and

A(2)
S = 1

τπH(H + LV πLπV )

(
H − LπV

β
4 (HLV π + LπV )

− 4
β LπV H + LπV

)
,

(41)
allows ℓV π and ℓπV to be controlled independently via

LV π = 4
βτV

ℓV π, LπV = 5β

8τπ
ℓπV , H = 5η

4τπP
, (42)



Comparison to BAMPS [DNBMXRG, PRD 89 (2014) 074005]
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▶ We can go to higher orders, giving us sufficient free parameters to
tune all second-order transport coefficients.

▶ Setting them to match those for hard spheres gives good agreement
to BAMPS.

http://dx.doi.org/10.1103/PhysRevD.89.074005
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