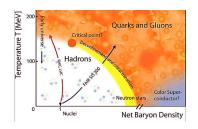
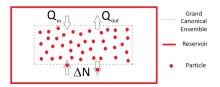
A New Way Of Resumming Qcd At A Finite Chemical Potential

Sabarnya Mitra

Centre for High Energy Physics, Indian Institute of Science, Bangalore


22nd Zimányi School, Wigner Centre for Theoretical Physics, ELTE Budapest 07 December 2022


Motivation and Introduction

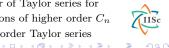
- The QCD phase diagram still remains to be conclusively conjectured
- Still in quest of conclusive evidences like a possible phase transition,
 QCD critical point, phases like color superconductivity, quarkyonic phases, extreme QCD (neutron stars)
- To answer, QCD Equation of state (EoS) is crucial to know
- Adopt a **thermodynamic** approach
- Observe the behaviour of thermodynamic observables with changing μ by remaining in a non-perturbative regime

Partition function and sign problem

- The ensemble : a grand canonical ensemble of quarks (u, d, s) in thermal equilibrium with a reservoir at temperature T
- Partition function $\mathcal{Z}(\mu, V, T) = \int \mathcal{D}\overline{\Psi} \,\mathcal{D}\Psi \,\mathcal{D}U \,\exp\left(iS_{QCD}[\overline{\Psi}, \Psi, U, \mu, V, T]\right) \to \mathcal{Z}(\mu, T) \sim \int \mathcal{D}U \,\,e^{-S_g[U, T]} \,\,\left[\det \,\,\mathcal{M}(\mu, T, U)\right], \,\, \text{with} \,\,\mathcal{M} \to \text{fermion matrix}$
- Complex det $\mathcal{M}(\mu)$ inhibits Monte-Carlo importance sampling
- With reweighting measure at $\mu = 0$, we get real measure but observable becomes complex and sign problem comes due to phaseangle $\theta(\mu)$: $\frac{\det \mathcal{M}(\mu)}{\det \mathcal{M}(0)} = \left| \frac{\det \mathcal{M}(\mu)}{\det \mathcal{M}(0)} \right| e^{i\theta(\mu)}$
- Decreasing $\langle \cos \theta \rangle$ with increasing μ , breakdown near $\langle \cos \theta \rangle \approx 0$
- One way-around is **Taylor expansion** around $\mu = 0$

Taylor Expansion: Use of Random volume sources

• With $\hat{\mu} \equiv \mu/T$, the Taylor expansion of excess pressure $\Delta P = P(\mu) - P(0)$ and number density \mathcal{N} to $\mathcal{O}(\mu^{\mathbf{N}})$ is given as


$$\frac{\Delta P}{T^4} = \sum_{n=1}^{N/2} C_{2n} \ \hat{\mu}^{2n}, \quad C_{2n} = \frac{1}{(2n)!} \frac{\partial^{2n}}{\partial \hat{\mu}^{2n}} \left[\frac{\Delta P}{T^4} \right]_{u=0}$$
(1)

$$\frac{\mathcal{N}}{T^3} = \frac{\partial}{\partial \hat{\mu}} \left[\frac{\Delta P}{T^4} \right] = \sum_{n=1}^{N/2} 2n \ C_{2n} \ \hat{\mu}^{2n-1} \tag{2}$$

- CP symmetry of QCD \rightarrow eqn.(1) even and eqn.(2) odd in μ
- To calculate Nth order Taylor coefficient, we need to evaluate terms such as $\langle \boldsymbol{D}_{1}^{P_{1}}\boldsymbol{D}_{2}^{P_{2}}\cdots\boldsymbol{D}_{N}^{P_{N}}\rangle$, where \mathcal{M} is fermion matrix and

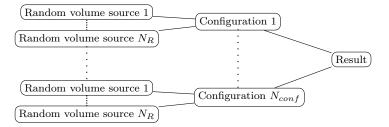
$$D_{n} = \frac{D_{n}}{n!} = \frac{1}{n!} \left. \frac{\partial^{n}}{\partial \hat{\mu}^{n}} \ln \det \mathcal{M}(T, \hat{\mu}) \right|_{\mu=0} \text{ where } \sum_{k=1}^{N} k \cdot P_{k} = N$$
 (3)

 Slow convergence and non-monotonic behaviour of Taylor series for different N and $T \to \mathbf{need}$ to do tedious calculations of higher order C_n → motivates exponential resummation of lower order Taylor series

Exponential Resummation

$$\frac{\Delta P_N^R(T,\mu)}{T^4} = \frac{1}{VT^3} \ln \left\langle \operatorname{Re} \left[\exp \left(\sum_{n=1}^N D_n \hat{\mu}^n \right) \right] \right\rangle \tag{4}$$

$$\frac{\mathcal{N}_{N}^{R}(T,\mu)}{T^{3}} = \frac{\partial}{\partial(\mu/T)} \left[\frac{\Delta P_{N}^{R}}{T^{4}} \right]$$
 (5)


- CP symmetry: Z must be real, implying that every configuration estimate of Z must be real and so, extract the real part of the exponential.
- D_1 and D_2 can be expressed as follows:

$$D_1 = \operatorname{tr} \left[\mathcal{M}^{-1} \frac{\partial \mathcal{M}}{\partial \mu} \right] , \ D_2 = \operatorname{tr} \left[\mathcal{M}^{-1} \frac{\partial^2 \mathcal{M}}{\partial \mu^2} \right] - \operatorname{tr} \left[\mathcal{M}^{-1} \frac{\partial \mathcal{M}}{\partial \mu} \mathcal{M}^{-1} \frac{\partial \mathcal{M}}{\partial \mu} \right]$$

• \mathcal{M}^{-1} cannot be evaluated exactly, for which we need to therefore estimate D_n using N_R random volume sources for every configuration

Scheme of the structure

Stochastic Estimate of Trace

• The D_n in eqn.(4) are replaced with \bar{D}_n (estimates of D_n) as follows

$$\bar{D}_n = \frac{1}{N_R} \sum_{r=1}^{N_R} D_n^{(r)}$$

• These \bar{D}_n lead to **biased estimates** (series expansion of eqn.(4))

$$(\overline{D}_n)^m = \left[\frac{1}{N_R} \sum_{r=1}^{N_R} D_n^{(r)}\right]^m = \left[\left(\frac{1}{N_R}\right)^m \sum_{r_1=1}^{N_R} \dots \sum_{r_m=1}^{N_R} D_n^{(r_1)} \dots D_n^{(r_m)}\right]$$

$$\approx \text{Biased estimate} + \sum_{r_1 \neq \dots \neq r_m=1}^{N_R} D_n^{(r_1)} \dots D_n^{(r_m)}$$
(6)

- These biased estimates are replaced with unbiased estimates order-by-order through cumulant expansion of exponential resummed series [S. Mitra, P. Hegde, C. Schmidt, Phys Rev D.106.034504, arXiv:2205.08517]
- But, we lose partition function due to truncation of the series
- This motivates us towards unbiased exponential resummation to achieve unbiased thermodynamics

μ basis

In μ basis, we have

$$P_{ub}^{\mu,N} = \frac{1}{VT^3} \ln \mathcal{Z}_{ub}^{\mu,N}, \quad \mathcal{Z}_{ub}^{\mu,N} = \left\langle e^{A_N(\mu)} \right\rangle, \quad A_N(\mu) = \sum_{n=1}^N \mu^n \frac{\mathcal{C}_n}{n!}$$
 (7)

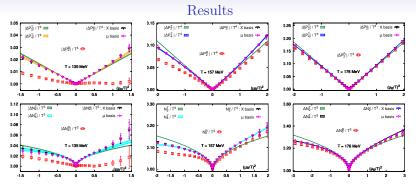
For N=4, we have (unbiased contributions upto $\mathcal{O}(\mu_B^4)$ and $\mathcal{O}(\mu_I^8)$)

$$\begin{aligned} &\mathcal{C}_{1} = \overline{D_{1}}, \\ &\mathcal{C}_{2} = \overline{D_{2}} + \left(\overline{D_{1}^{2}} - (\overline{D_{1}})^{2}\right) \\ &\mathcal{C}_{3} = \overline{D_{3}} + 3\left(\overline{D_{2}D_{1}} - (\overline{D_{2}})\left(\overline{D_{1}}\right)\right) + \left(\overline{D_{1}^{3}} - 3\left(\overline{D_{1}^{2}}\right)\left(\overline{D_{1}}\right) + 2\left(\overline{D_{1}}\right)^{3}\right) \\ &\mathcal{C}_{4} = \overline{D_{4}} + 3\left(\overline{D_{2}^{2}} - (\overline{D_{2}})^{2}\right) + 4\left(\overline{D_{3}D_{1}} - (\overline{D_{3}})\left(\overline{D_{1}}\right)\right) + \\ & 6\left(\overline{D_{2}D_{1}^{2}} - (\overline{D_{2}})\left(\overline{D_{1}^{2}}\right)\right) - 12\left(\left(\overline{D_{2}D_{1}}\right)\left(\overline{D_{1}}\right) - (\overline{D_{2}})\left(\overline{D_{1}}\right)^{2}\right) + \\ & \left(\overline{D_{1}^{4}} - 4\left(\overline{D_{1}^{3}}\right)\left(\overline{D_{1}}\right) + 12\left(\overline{D_{1}^{2}}\right)\left(\overline{D_{1}}\right)^{2} - 6\left(\overline{D_{1}}\right)^{4} - 3\left(\overline{D_{1}^{2}}\right)^{2}\right) \end{aligned}$$

 $\overline{D_m^p D_n^q} \to \text{unbiased } (p+q)^{th} \text{ power of } D_m \text{ and } D_n, \text{ for integers } m, n, p, q \geq 0$

Cumulant or X basis

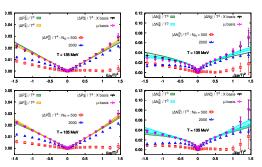
In **cumulant** or **X** basis, we define a new variable $X_N = \sum_{n=1}^N \frac{\mu^n}{n!} D_n$


$$P_{ub,M}^{X,N} = \frac{1}{VT^3} \ln \mathcal{Z}_{ub,M}^{X,N}, \quad \mathcal{Z}_{ub,M}^{X,N} = \left\langle e^{Y_M^N(X)} \right\rangle, \quad Y_M^N(X) = \sum_{n=1}^M \frac{\mathcal{L}_n(X_N)}{n!} \quad (8)$$

M cumulants, highest order derivative \rightarrow **N**. For M = 4, we have

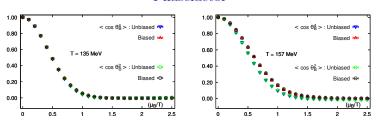
$$\begin{split} \mathcal{L}_{1}(X_{N}) &= (\overline{X_{N}}) \\ \mathcal{L}_{2}(X_{N}) &= \left[\left(\overline{X_{N}^{2}} \right) - \left(\overline{X_{N}} \right)^{2} \right] \\ \mathcal{L}_{3}(X_{N}) &= \left[\left(\overline{X_{N}^{3}} \right) - 3 \left(\overline{X_{N}^{2}} \right) \left(\overline{X_{N}} \right) + 2 \left(\overline{X_{N}} \right)^{3} \right] \\ \mathcal{L}_{4}(X_{N}) &= \left[\left(\overline{X_{N}^{4}} \right) - 4 \left(\overline{X_{N}^{3}} \right) \left(\overline{X_{N}} \right) + 12 \left(\overline{X_{N}^{2}} \right) \left(\overline{X_{N}} \right)^{2} \\ &- 6 \left(\overline{X_{N}} \right)^{4} - 3 \left(\overline{X_{N}^{2}} \right)^{2} \right] \end{split}$$

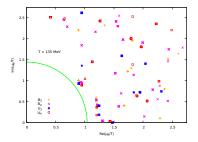
Reproduces exactly first M cumulants of unbiased cumulant expansion



 $\Delta P_2/T^4$ (top row) and \mathcal{N}_2/T^3 (bottom row) plots in $(\mu_B/T)^2$ for 135 (left column), 157 (middle column) and 176 (right column) MeV

- We have used \$\mathcal{O}(500)\$ volume sources per configuration for both biased and unbiased exponential resummed results
- Captures higher-order Taylor series even for lowest T = 135 MeV,
- Also, rapid convergence from lowest N = 2. All these hold true for all three temperatures in three distinct phases of phase diagram


2000 random vectors for D_1


 $\Delta P_{2,4}/T^4$ (left) and $\mathcal{N}_{2,4}/T^3$ (right) plots in both bases for T=135 MeV [S. Mitra, P. Hegde, arXiv:2209.11937]

- For Biased resummed results, we have used 2000 random volume sources for D_1 and 500 random volume sources for other D_n . For unbiased results, we have used 500 random volume sources for all D_n
- Higher order Taylor series captured with just $\mathcal{O}(500)$ volume sources, saving appreciable computational time and data storage space

Phasefactor

Phasefactor plots for $T=135~\mathrm{MeV}$ (left) and 157 MeV (right)

TIISC

Roots of \mathcal{Z}_2 and \mathcal{Z}_4 in complex μ_B plane at 135 MeV

Conclusions

- Essence of cumulant expansion analysing biased and unbiased estimates
- Replacing biased with unbiased powers cause truncated ER approach QNS
- The very idea of an unbiased exponential resummation
- Not entire, but partially unbiased results upto $\mathcal{O}(\mu^N)$ working in two bases
- Works well for problematic, yet important low T regime
- Saves computational time and data storage space (convenience)
- A newly defined reweighting factor and Z altogether
- Retrieve back phasefactor and roots of $\mathcal Z$ in the complex μ plane
- Get back thermodynamics preserving partial unbiasedness
- Inductively, we approach Towards the much-coveted unbiased exponential resummation to all orders in the limit of an infinite cumulant series which is identical to an all-ordered Taylor series

Computational Setup

For all the above calculations, we have used the following data:

- Physical quark mass values for u, d, s quarks, where $m_u = m_d = m_s/27$. This sets the crossover $T \approx 157$ MeV at $\mu_B = 0$
- Chosen T = 135, 157, 176 MeV, characterizing hadronic, crossover, quark gluon plasma phases respectively.
- Temperatures are chosen so that $\left(T_{hadron} + T_{plasma}\right)/2 \approx T_{crossover}$
- ullet Considered lattice with $N_\sigma=32$ spatial sites and $N_ au=8$ temporal sites
- Fermion action used is a 2 + 1 flavored
 HISQ (Heavily Improved Staggered Quarks) action
- For μ_I , we have used gauge ensemble having 20K configurations and 100K configurations for μ_B
- Because, there is a sign problem for μ_B . No sign problem for μ_I

THANK YOU SO MUCH

FOR YOUR PATIENCE AND ATTENTION !!!

Köszönöm

