

Megan Connors Georgia State University for the PHENIX Collaboration

ZIMÁNYI SCHOOL 2022

Jets Measurements with PH ENIX And Other Recent

Megan Connors Georgia State University for the PHENIX Collaboration

ZIMÁNYI SCHOOL 2022

PHENIX Detector

Central detectors $|\eta| < 0.35$

Forward/backward detectors Muon Arms

PHENIX Highlights

Thurs. 12/8:

HBT correlations Marton Nagy

 π^{0} in Au+Au *Nour Abdulameer*

√s [GeV]	_p+p	p+AI	p <mark>+Au</mark>	d <mark>+Au</mark>	³ He <mark>+Au</mark>	Cuton	Cu+Au	Au+Au	U+U
510									
200	\bigcirc			Ø				Ø	
130								Ø	
62.4	Ø							Ø	
39									
27									
20									
14.5									
7.7									

Hard Probes

- Jets
- Jet like correlations
- Heavy Flavor
- High p_T hadrons
- Bulk Measurements
 - Flow
 - Thermal photons

Recent Papers:

*Focus on Heavy-Ion related results

arXiv:2207.10745 φ meson production in Cu+Au and U+U collisions

arXiv:2203.17058 Charm and bottom quark production in 200 GeV Au+Au collisions

arXiv:2203.17187 Non-prompt direct photon production in Au+Au collisions

arXiv:2203.12354 Low- p_T direct-photon production in Au+Au collisions at 39 and 62.4 GeV

arXiv:2203.09894 Second-harmonic Fourier coefficients from azimuthal anisotropies in p+p, p+Au, d+Au, & ³He+Au collisions arXiv:2203.06087 Study of φ meson production in p+Al, p+Au, d+Au, and ³He+Au collisions

arXiv:2202.03863 ψ (2S) nuclear modification at backward and forward rapidity in p+p, p+Al, and p+Au collisions at 200 GeV

PH

PH

200 GeV p+p R=0.3 Jet Cross Section

Comparison with NLO pQCD

• R=0.3 anti- k_T jet cross section systematically lower than NLO prediction.

Comparison with NLO pQCD

- R=0.3 anti- k_T jet cross section systematically lower than NLO prediction.
- Small-R anti-k_T jet cross sections are systematically lower than NLO predictions. (Large R generally agrees better with NLO.)

Investigating a comparison with NNLO

• Suggests the distribution of particles in the jet is not accurately reproduced by NLO.

Jet substructure in p+p

- Unfolded substructure distributions for jets in $p_{\rm T}$ bin 12-14.5 GeV/c compared to tuned PYTHIA
- p+p measurements are an important baseline for p+A and A+A **PH ENIX**Megan Connors PHENIX Zimanyi School 2022

- Suppression at high p_{Th}
- Enhancement at low p_{Th}
- Transition at similar p_{Th} for all trigger p_{T}

Medium Response

- Hybrid model shows different behavior with and without wake (medium response)
- What is the p_T dependence to this feature?

1 dN φΔb_oπ

0.15

¥₀.⁺ D

• PHENIX π^0 -h may imply wake is more relevant for low p_T hadrons

 $\Delta \phi$

•

Medium Response

- Hybrid model shows different behavior with and without wake (medium response)
- What is the p_T dependence to this feature?
 - PHENIX π^0 -h may imply wake is more relevant for low p_T hadrons

Hybrid

w/o wake

w/ wake

Quark Mass Dependent Energy Loss

Beauty is less suppressed than charm

Various Collision Systems: R_{AA} at High p_T "" " We was war

- For $p_T > 6$ GeV/c same trend for all systems and particles as a function of N_{part}
- <R_{AB}> for ϕ mesons consistent across Cu+Cu, Cu+Au, Au+Au and U+U

arXiv:2207.10745

System Size Dependence...Small Systems

PRC 105, 064902 (2022)

- High $p_T R_{xA}$ similar across all collision systems
- Suppression in central collisions
- Enhancement in peripheral collisions
 - Difficult to explain...

System Size Dependence...Small Systems

- Previously observed centrality dependence of R_{dA}
 - 0-5% < 1 < 60-88%
- High p_T direct photons should not be modified

System Size Dependence...Small Systems

- Previously observed centrality dependence of R_{dA}
 - 0-5% < 1 < 60-88%
- High p_T direct photons should not be modified

- But similar trend is observed!
- Can use photon R_{dAu} to correct for bias in N_{coll} determination

tion tool Dire

Small suppression in central collisions remains

hristing Nattrass (UTK), CIPANP August 2022• EMC effect? QGP? **PH**^{*}ENIX

16

System Size Dependence at Lower p_{T}

PRC 105, 064902 (2022)

- Varying the collision system (minimum bias shown)
- Cronin enhancement at intermediate p_T
 - Lighter target shows smaller enhancement (p+Al < p+Au)
 - Heavier projectile shows smaller enhancement (He+Au < d+Au < p+Au)

• mesons in small systems

arXiv:2203.06087

• mesons in small systems

PH

- R_{AA} well-described by PYTHIA/Angantyr
 - Misses overall system size ordering

arXiv:2203.06087

• mesons in small systems

- R_{AA} well-described by PYTHIA/Angantyr
 - Misses overall system size ordering
- R_{AA} also well-described by PYTHIA with nPDFs
 - Misses overall system size ordering

ϕ meson v₂ in Cu+Au and U+U

- Φ v₂ scales with 2nd order eccentricity and characteristic nuclear overlap length
- Agrees with same hydrodynamic model shown for the small systems

PRC 105, 024901 (2022)

Nature Physics **15**, pages214–220 (2019)

arXiv:2207.10745

Thermal photons in small systems

- Enhancement of low p_T photons in central p+Au
- Consistent with expected thermal photon production (PRC 95 014906 (2017))

Smooth trend between small and large systems

Thermal Photons in Au+Au

- Recently published 39 and 62.4 GeV Au+Au data (arXiv:2203.12354) $\int_{p_T = i_{\rm c}}^{5 \,{\rm GeV}/c} \frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \, dp_T = A_{ch} \, \left(\frac{dN_{\rm ch}}{d\eta}\right)^{\alpha}$
- Studies α in more detail
- $\alpha = 1.21\pm0.04$ (stat) consistent for all p_{Tmin}
- Consistent but slightly less than the previously used $\alpha = 1.25$ from N_{coll} \propto (dN_{ch}/dη)^{α}
- Also insensitive to collision energy and centrality
- May suggest that direct-photon radiation at low p_T originates from thermal processes while system transitions from the QGP phase to a hadron gas

Data and Analysis Preservation (DAP)

- To ensure reproducibility of published results:
 - Standardized analysis notes
 - All analysis code, macros, relevant files stored in HPSS
 - Upload published data to HEPData
- Ideal Goal: re-analysis possible "forever" by "everyone"
 - Docker/REAna
 - Github and Zenodo
 - CERN OpenData for the general public
 - RIVET
- Find out more at on the Analysis tab on the phenix website: <u>https://www.phenix.bnl.gov/</u>

Conclusions

- PHENIX has measured jet cross section and substructure distributions in 200 GeV p+p collisions
- PHENIX high p_T particle correlations measurements reveal jet energy loss and medium response effects in 200 GeV Au+Au collisions.
- The PHENIX collaboration continues to measure many unique and important results...
 - Spanning hard probes and bulk measurements
 - Spanning a variety of collision systems and energies
 - Including spin related results (excluded from this presentation for time)
 - Several new publications and PhD theses
 - DAP will ensure this can continue far into the future

Backup Slides

R_{AB} Collision dependences

- Cronin enhancement at low \boldsymbol{p}_{T}
 - Projectile dependence
- Suppression seen at high p_T
 Same for all collision systems
- Peripheral consistent with 1 but also consistent with >1

Phi v2 in Cu+Au

Momentum Dependence of Modification

- High p_T suppression independent of nuclei being traversed
- Cronin region follows $N_{\mbox{\scriptsize coll}}$ scaling

R_{AA} in Large collision systems 🖤 🎬 🛶

Pathlength Dependent Energy Loss: Heavy Flavor v₂

 $D_{AA}(\Delta \varphi)$ for fixed Associated Hadron p_T $D_{AA} = YAA - Ypp$

- Measure the difference in the yields instead of the ratio
- Less sensitive to yields near zero

 $D_{AA}(\Delta \varphi)$ for fixed Trigger p_T $D_{AA} = YAA - Ypp$

- What is the dependence on hadron p_T ?
- Trigger p_T: 4-5 GeV/c

