Studies of color reconnection and fragmentation with the CMS

7 December 2022

Zimányi Winter School

Attila Rádl

Eotvos Lorand University, Wigner RCP

Outline

- Description of color reconnection
- Jet properties affected by the color reconnection scheme
- Main motivation: ALEPH measurements on this topic
- Studied color reconnection approaches
- Results from CMS recorded proton-proton collisions

Color reconnection

- Color flux tube rearrangement instead of simple planar color flow
 - What is the effect on the final state?
- Obtained shorter strings \rightarrow energetically favourable configuration

Color reconnection for jets

- Color flux tube rearrangement instead of simple planar color flow
 - What is the effect on the final state?
- Obtained shorter strings → energetically favourable configuration

Motivation from ALEPH results

- Color reconnection in gluon jets from e⁻e⁺ collisions previously studied by LEP detectors
- One of the measured properties: sum charge of jet constituents wrt minimal rapidity
 - Significant differences between predicted neutral jet rates

Proton-proton collisions in CMS

- Different conditions: more complex systems from pp collisions
- General purpose detector system
- Objects fit into the tracker volume ($|\eta| < 2.5$)

n=2.5

6

Minimum rapidity found in jets from pp collisions

- Anti-k, jets with R=0.4, kinematic cuts in the backup
- Narrow jets with large rapidity gaps are rather suppressed

Default CR (CR0): reconnection probability depends on the p_T of the partons.

'Newer scheme' (CR1): QCD sum rules are also taken into account. Predicts more narrow jets.

CROFF: CR0 tunes, but the whole CR process is excluded. Significantly lower number of jets with high gap.

$$\delta = \frac{r_{MC} - r_{data}}{r_{data}}$$

relative model-data difference

Examined jet properties

- Interesting properties for the all the different y_{min} windows:
 - \circ number of charged particles in jets (n_{ch})
 - \circ sum charge distribution (Q_{Jet})

Summary plots

- Significant difference between the model predictions •
- Main properties for each min rapidity region:

relative model-data difference

Conclusion and further plans

- Colour reconnection sensitive properties of jets found
- Feasibility studies: CMS recorded pp data can be used
- Increase the statistics for non-standard MC samples
- Extend the study to include other CR approaches (e.g. gluon-move scheme in

Pythia, Herwig++, etc)

Backup

Overview of pp analysis properties

Ultralegacy pp runs from 2017	294927-306462, Era B-E, 31.7 fb ⁻¹
MC used for the analysis	Official ultralegacy campaign (tune: CP5CR0) + two private MC samples (tunes: CP5CR1; CP5CROff)
Triggers to collect data	Particle Flow AK4 jet triggers with proper weights and 99% efficiency cuts
Reconstructed objects	Pile-up cleared AK4 slimmedJetsPuppi $p_T > 30$ GeV, $ \eta < 2$, containing at least two tracks Tracks, $p_T > 0.2$ GeV (pions, leptons) Neutral constituents, $p_T > 0.2$ GeV (photons, kaons)
Generator level objects	GenJets (AK4) $p_T > 20$ GeV, $ \eta < 2$, at least two charged particles Charged constituents $p_T > 0.2$ GeV Neutral constituents $p_T > 0.2$ GeV