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Pycnonuclear reactions in compact stars

In stars, thermal energy of reacting nuclei overcomes the Coulomb
repulsion between them so that a reaction can proceed. At sufficiently
high densities, even at zero temperature, energy of nuclei in lattice lead
to an appreciable rate of reactions. This phenomenon is known as
pycnonuclear reaction (from “pyknos” as “dense” in Greek) [1].

Pycnonuclear burning occurs in dense and cold cores of white dwarfs [2]
and in crusts of accreting neutron stars [3].

Astrophysical S-factors are estimated for 946 thermonuclear reactions for
Isitopes C, O, Ne and Mg for energies 2 - 30 MeV [4]. Large database of
S-factors [5] Is formed for isotopes Be, B, C, N, O, F, Ne, Na, Mg, Si
(5000 non-resonant thermo-reactions).

[1] A.G.W.Cameron, Pycnonuclear reactions and nova explosions, Astr. J. 130, 916 (1959).
[2] E.E.Salpeter, H.M.VanHorn, Nuclear reaction rates at high densities, Astr. J. 155, 183 (1969).
[3] P. Haensel/ et al., Astron. Astr. 229, 117 (1990); 404, L33 (2003).

[4] M.Beard, A.V.Afanasjey, et al., At. Dat. Nucl. Dat. Tabl. 96, 541-566 (2010). -
[5] A.V.Afanasjev, M.Beard, et al., Phys. Rev. C 85, 054615 (2012). 2




Potential of interactions

Radial potential, V (MeV)
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Quantum mechanical study on the
basis of solution of Schrodinger
equation with potential:

V(r)=V.(r)+V, (r) +V,_, (),

1+ exp( —Rg j

R _ r. ( 1/3_|_A;./3)
r,=1.30fm, a, =0.44fm.
V =-75MeV.

VN (r) -

p, =6-10° 9
Cﬂ]

R, =92.5fm,
n, =3.014189-10" fm™.




Method: 1D tunneling (1)

One can understand idea of method the most clearly in the simplest
case — analyzing wave, propagating above rectangular barrier.

Schrodinger h* d? Y '
. ———(X)+V(X)p(X) =Ep(x). I I 1 III
(L ikx —ikx inc ‘!
Wave function © Jkr Age " x<0, R ” tr
— KX 1Ko X —
(WF): p(X) =< o€ ) +p7, 0<x<a, 1€
Are, X=a ) T x
Approach on step-by-step: Continuity condition at x = 0:
Step 1.
Yy 'B(O):kikk ! A‘gO):IE;tz'

I m I g =€, X <0, 2 :
eV | pl? = pOe**  0<x<a, Transition to under-barrier
— | tunneling:

wr| 1 g = AP <, :

— L G =ig, k=t 2mE-V)
0 a X h 4




Method: 1D tunneling (2)
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Method: Arbitrary number of barriers

Calculation of penetrability for arbitrary number of barriers is
essentially more complicated, it has been solved.

Wave function:
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Cross-section of capture

Cross-section of capture: Penetrability in WKB-
> approximation:
7Z'h i | Rips 2m 1
O apture(E) = Z(Z +DT,B. Toke = EXP—2 I Qp —V(r))er
Rip.2

Here, E is kinetic energy of relative motion of two nuclei in lab. frame, E, is kinetic energy
of relative motion of two nuclei in the center-of-mass frame (we use E = E;), m is reduced
mass of two nuclei, P, is probability of fusion of two nuclei, T, is penetrability of barrier.

Penetrability and reflection for method MR: Test for method MR

) (it is absent in WKB-calc.):
S = |Af"
Tue = ‘ ‘ G ‘ ‘ TMIR + RMIR +M MIR =1.
S(E)

Connection with S-factor in astrophysics: o(E) = XT -




Cross-section of a-capture: method MIR & WKB
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Formula for probability of fusion

Probability of fusion, p

ross-section of capture (mbarn)
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New gquasi-bound states In scattering
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Accuracy of MIR method In capture task
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Energy levels of zero-point vibrations (1)

Our method:
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Energy levels of zero-point vibrations (2)
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Energy levels of zero-point vibrations (3)
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Error in calculation of amplitudes:

Energy, MeV
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Amplitude AR , Im
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Conclusions

1) Rates of pycnonuclear reactions are changed essentially after taking
Into account nuclear forces (i.e., nuclear potential between nuclei).

2) Quantum study reduces rates of reactions up to 1,8 times. This is
explained so: the most probable fusion of the nuclei does not happen after
leaving nuclear fragment from the tunnel region, but after further
propagation to the middle of the internal potential well.

3) Quantum study of the pycnonuclear reaction requires complete analysis
of quantum fluxes in the internal region in the nuclear system. This leads
to the appearance of new quasibound states, there formation of compound
nuclear system is the most probable.

4) Reaction in quasibound states is essentially more probable, than at
energies of zero-point vibrations studied by Zel'dovich and followers.
There is a sense to tell about reaction rates for quasi-bound states, rather
than for states of zero-point vibrations in lattice sites. This leads to the
changes in estimation of the rates of pycnonuclear reactions in stars.

5) Energy spectrum of zero-point vibrations is revised.
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