Superfluid thermodynamics

Peter Ván

WIGNEF Research Centre for Physics Institute of Particle and Nuclear Physics, Department of Theoretical Physics and BME, Department of Energy Engineering

Zimányi Winter School, 2022.

Quantum to fluid

Connected realities

quantum mechanics
$$ightarrow {\it superfluids}
ightarrow {\it capillary fluids}$$

From special to general. Analogy?

$$i\hbar\partial_t\Psi+rac{\hbar^2}{2m}\Delta\Psi-\Phi\Psi=0,$$

Madelung transformation

$$\Psi = Re^{irac{\hbar}{m}S}$$

 $ho = |\Psi|^2$, $oldsymbol{v} =
abla oldsymbol{S}$, fluid form:

$$\dot{
ho} +
ho
abla \cdot oldsymbol{v} = 0, \qquad
ho \dot{
m v} +
abla \cdot oldsymbol{P}_{oldsymbol{K}}(
ho,
abla
ho,
abla^2
ho) = oldsymbol{0},$$

Perfect Korteweg fluids.

Fluid to quantum

Thermodynamic deduction

$$(capillary fluids) \Longrightarrow \textbf{superfluids} \Longrightarrow (quantum mechanics)$$

Consequences

- Second Law instead of variational principles
- Second Law instead of holography

A superfluid is not water with zero viscosity. What about QGP?