Exploring Quantum Entanglement in Heavy Ion Collisions

Eliana Marroquin¹ and Marcelo Munhoz¹

 1 High Energy Physics and Instrumentation Center (HEPIC), Physics Institute at the University of São Paulo, Brazil

Perturbative QCD

Recent studies established the relation between entanglement entropy S(x) and parton densities for small Bjorken-x, large rapidity regime

$$S_{parton} = \ln(xG(x;Q^2) + x\Sigma(x;Q^2))$$

initial state

[1] Phys. Rev. D 95, 114008. D. Kharzeev and E. Levin (2017) [2] Phys. Rev. D 104, 031503. D. Kharzeev and E. Levin (2021)

Entanglement Entropy

Entanglement entropy (EE) applies to both perturbative and non-perturbative regimes

 \rightarrow EE can connect initial and final state of highenergy reactions

$$S_{hadron} = -\sum P(N) \ln P(N)$$
final state

High Energy Processes

Try to verify the relation: $S_{parton} \leq S_{hadron}$

1. Deep Inelastic Scattering [3] arXiv:2207.09430v1. M. Hentschinski et al (2022)

2. Proton-proton collisions [4] Phys. Rev. Lett. 124, 062001. Z. Tu et al (2020)

Our proposal: entanglement in proton-nucleus collisions with ALICE

Zimányi School Winter Workshop 2022, Budapest, Hungary

Entanglement in proton-proton collisions

Charged-particle multiplicity distributions

- Multiplicity distribution is the probability distribution $P(N_{ch})$ of a collision event to have N_{ch} particles produced
- [4]: proton-proton (pp) collisions with center-of-mass energies $\sqrt{s} = 0.9$, 2.36, and 7 TeV at different pseudo-rapidity ranges $|\eta| < 0.5$, 1.0, and 1.5 of the CMS experiment
- Using Negative Binomial Distribution (NBD) and double NBD to fit the data, we take as our distribution P(N) half of the average to account for one proton distribution

Parton Distribution Functions

- The measurable cross-section can be factorized in a short-distance interaction — the partonic crosssection — and in a function containing the longdistance interactions, the Parton Distribution Functions (PDFs)
- PDFs cannot be derived from first principles → global QCD analysis procedure
- pp analysis: used HERAPDF, NNPDF, and MSTW sets to calculate S_{parton} for d, u, s, and the gluon distribution

Entanglement entropies for pp collisions

What about proton-nucleus collisions?

- Final state entropy Currently working on the data analysis of charged-particle distributions of proton-Lead collisions with ALICE [PAG-MM: <u>https://indico.cern.ch/event/1214899/]</u>
- Initial state entropy nPDFs: Fewer data constraints lead to parametrization bias \rightarrow new approaches for S_{parton}

This work is supported by The São Paulo Research Foundation (FAPESP), grant numbers: 2020/04438-7 and 2022/05642-0.