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Abstract
The propagation properties of spin degrees of
freedom are analyzed in the framework of rela-
tivistic hydrodynamics with spin based on the
de Groot–van Leeuwen–van Weert definitions of
the energy-momentum and spin tensors. We de-
rive the analytical expression for the spin wave
velocity for arbitrary statistics and show that
it goes to half the speed of light in the ultra-
relativistic limit. We find that only the trans-
verse degrees of freedom propagate, analogously
to electromagnetic waves [1].

Canonical currents
Starting from the Dirac Lagrangian,

LD(x) =
iℏc
2
ψ̄(x)γµ

←→
∂ µψ(x)−mc2ψ̄(x)ψ(x),

the canonical energy-momentum and spin ten-
sors can be obtained as:

Tµν
can =

iℏc
2
ψ̄γµ
←→
∂ νψ,

Sλ,µν
can = −ℏc

2
ϵλµναψ̄γαγ5ψ,

while the total angular momentum tensor reads

Jλ,µν
can = xµTλν

can − xνTλµ
can + Sλ,µν

can .

Since the total angular momentum is conserved,
we have

∂λS
λ,µν
can = T [νµ]

can .

Pseudogauge transformations
One can define a new pair of tensors Tµν and
Sλ,µν connected to the canonical ones through
the so-called pseudo-gauge transformations [2]

Tµν =Tµν
can +

1

2
∂λ(Φ

λ,µν +Φν,µλ +Φµ,νλ)

Sλ,µν =Sλ,µν
can − Φλ,µν + ∂ρZ

µν,λρ

where the superpotentials Φλ,µν and Zµν,λρ sat-
isfy Φλ,µν = −Φλ,νµ and Zµν,λρ = −Zνµ,λρ =
−Zµν,ρλ. The newly defined tensors preserve
the total energy, linear momentum, and angu-
lar momentum obtained by integrating over a
closed or infinite hypersurface:

P ν =

∫
Σ

dΣµT
µν , Jλν =

∫
Σ

dΣµJ
µ,λν .

The conservation laws are unchanged: ∂µTµν =
0, ∂λJ

λ,µν = 0. In de Groot-van Leeuwen-
van Weert (GLW) pseudogauge, Φλ,µν =
iℏ2

4m ψ̄(σ
λµ←→∂ ν − σλν←→∂ µ)ψ, Zµνλρ = 0, which

gives:

Tµν
GLW = − ℏ2

4m
ψ̄
←→
∂ µ←→∂ νψ,

Sλ,µν
GLW =

iℏ2

4m

(
ψ̄σµν←→∂ λψ − ∂ρϵµνλρψ̄γ5ψ

)
.
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Relativistic hydrodynamics with spin
Since GLW form of energy-momentum tensor is symmetric: T νµ

GLW(x) = Tµν
GLW(x), conservation of

total angular momentum ∂µJ
µ,αβ(x) = ∂µ(x

αTµβ(x) − xβTµα(x)) + ∂µS
µ,αβ(x) = 0 implies spin

conservation ∂µS
µ,αβ
GLW(x) = 0. Using classical treatment of spin [3], one can obtain well-known

perfect-fluid form of energy-momentum tensor whereas the spin tensor (for the general statistic)
reads as

Sλ,µν =

∫
dP dS pλ sµν

[
f+eq + f−eq

]
≃ − 2s2

3m2

∑
σ=±

∫
dP pλf ′σeq

(
m2ωµν+2pαp[µων]

α

)
= Sλ,µν

ph + Sλ,µν
∆ ,

where Sλ,µν
ph = (A1+A3)U

λωµν , Sλ,µν
∆ = (2A1−A3)U

λUαU [µων]
α+A3(∆

λαU [µων]
α+U

λ∆α[µων]
α+

Uα∆λ[µων]
α).

The thermodynamic functions A1 and A3 can be obtained as

A1 =
s2

9

[(
∂N
∂ξ

)
β

− 2

m2

(
∂E
∂β

)
ξ

]
, A3 =

2s2

9

[(
∂N
∂ξ

)
β

+
1

m2

(
∂E
∂β

)
ξ

]
.

Here, ωµν is an anti-symmetric tensor of rank 2, having 6 degrees of freedom. With respect to Uµ,
ωµν can be decomposed as

ωµν = κµUν − κνUµ + ϵµναβU
αωβ .

κµ = ωµνUν is the electric field component. ωµ = 1
2ϵ

µναβUνωαβ is the magnetic field component.
Since κµUµ = ωµUµ = 0, in the LRF they take the form

κµLRF = (0, CκX , CκY , CκZ), ωµ
LRF = (0, CωX , CωY , CωZ).

Propagation properties of spin degrees of freedom
In an unpolarized fluid at rest, Uµ = (1, 0, 0, 0) and ωµν = 0. Considering small perturbations along
z, we look for oscillations in ωµν . Since there is no linear coupling between Nµ, Tµν and ωµν , the
fluctuations in the spin sector do not influence those in the fluid sector. In this approximation, we
have Sλ,µν

ph = (A1+A3)g
tλωµν , Sλ,µν

∆ = 2(A1−2A3)g
tλgt[µων]t+A3(g

t[µων]λ+gλ[µων]t−gtλωµν).

Taking the divergence of the above equations leads to: ∂tCκi − 1
2ϵ

tijz∂zCωj = 0, ∂tCωi −
A3

2A1
ϵtijz∂zCκj = 0. The longitudinal components do not propagate, since ∂tCκZ = ∂tCωZ = 0.

The transverse dofs C ∈ {CκX , CκY , CωX , CωY } obey:(
∂2

∂t2
− c2spin

∂2

∂z2

)
C = 0,

where the speed of the spin wave satisfies:

c2spin = −1

4

A3

A1
=

1

4

(∂E/∂T )ξ − z2(∂N/∂ξ)T
(∂E/∂T )ξ + z2

2 (∂N/∂ξ)T
.
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Ideal gas limit: c2spin = 1
4

K3(z)
K3(z)+

z
2K2(z)

, (depends only on z = m/T ).

Fermi-Dirac gas limit: c2spin =
1
4

∑∞
ℓ=1

(−1)ℓ+1

ℓ cosh(ℓξ)K3(ℓz)∑∞
ℓ=1

(−1)ℓ+1

ℓ cosh(ℓξ)[K3(ℓz)+
ℓz
2 K2(ℓz)]

, (depends on z and ξ).

For small z = m/T ≪ 1:

MJ: cspin =
1

2

[
1− z2

16
+O(z4)

]
, FD: cspin =

1

2

[
1− 15z2

4π2

1 + 3ξ2

π2

7 + 30 ξ2

π2 + 15 ξ4

π4

+O(z4)

]
.

For large z = m/T ≫ 1: cspin ≃ 1√
2z
.

Noting that Cκ,Z and Cω,Z do not propagate. The linearly polarized solutions can be written as

Cκ = C0Re[e
−ik(cspint−z)](e1 cos θ + e2 sin θ), Cω = 2cspinC0Re[e

−ik(cspint−z)](e1 sin θ − e2 cos θ),

where the analogy to the EM waves is evident since Cω = 2cspinn̂× Cκ.


