Precision mass measurements with the CMS experiment

Markus Seidel

Jan 9, 2023

Heavy particle masses in the Standard Model

Markus Seidel (RTU, LV)

Precision mass measurements with the CMS experiment

Vacuum stability

• Evolution of H^4 sensitive to m_t and α_s , negative values \rightarrow EW vacuum unstable

arXiv 1707.08124 : "the first complete calculation of the lifetime of our universe: 10^139 years. With 95% confidence, we expect our universe to last more than 10^58 years." dotted lines = scale at which New Physics could stabilize the SM
 Calculated with m_t^{pole} = m_t^{MC} = 173.1 ± 0.6 GeV (Tevatron + LHC Run 1)
 Latest result: τ_{EW} ~ 10<sup>983⁺¹⁴¹⁰/₋₄₃₀ years arXiv 2108.09315
 Using recent global averages m_H = 125.1 GeV, m_t = 172.4 GeV
</sup>

Top mass definition

Pole mass absorbs quantum corrections to fermion propagator

• $m^{\text{pole}} = \text{particle mass in isolation but no free quarks} \rightarrow \text{renormalon ambiguity}$

Short-distance mass schemes do not (fully) absorb finite terms \rightarrow scale-dependence of mass parameter, e.g. $\overline{MS} \, \overline{m}_t \, (\overline{m}_t) \, , \, m_t^{MSR} \, (R)$

Most m_t measurements rely on MC, mass scheme under discussion:

arXiv 1405.4781
$$m_t^{\text{pole}} - m_t^{\text{MC}} = 0.05^{+0.32}_{-0.62} (\text{MC} \rightarrow \text{MSR}) \pm 0.50 (\overline{\text{MS}} \rightarrow \text{pole}) \text{ GeV}$$

 $\rightarrow 0.8 \text{ GeV}$ additional uncertainty!

arXiv 1801.04826 MC authors: MC implements pole mass.

ightarrow Just need to make sure that shower and hadronization uncertainties are correct?

Outline

- 1 Experimental conditions
- **2** MC modeling and uncertainties
- **3** Top mass measurements
- 4 Higgs mass measurements
- 5 W-like Z mass

Experimental conditions

Compact Muon Solenoid experiment

Dimensions

- Length: 29 m
- Diameter: 15 m
- Weight: 14 000 t

Sub systems

- Silicon pixel + strip tracker
- EM and hadronic calorimeter
- Solenoid magnet (3.8 T)
- Muon chambers

JINST

Excellent LHC performance

- Huge number of heavy particles produced at CMS
- For example, top quark pair production:

 $N_{
m tar t} = {\cal L}_{
m integrated \ lumi} imes \sigma_{
m tar t} \ _{
m production \ xsec}$

- Run 1 (2010–2012) $\rightarrow N_{t\bar{t}} = 7M \text{ at } 7 \text{ and } 8 \text{ TeV}$
- Run 2 (2015–2018) → $N_{t\bar{t}} = 136M$ at 13 TeV
- Run 3 (started 2022)
 - $\rightarrow N_{t\bar{t}} = 32M$ at 13.6 TeV

"Pileup"

 \blacksquare High instantaneous luminosity \rightarrow multiple pp interactions per bunch crossing

- Tracking copes well: tracks assigned to distinct interaction vertices
 - \blacksquare CMS Phase-2 upgrades for High-Lumi LHC will include timing capabilities \rightarrow 4D vertexing
- Calorimeters: energy deposits overlap and cannot be distinguished

Luminosity measurement

Precise knowledge of luminosity essential for absolute cross section measurements

- Different methods: pixel cluster counting, vertex counting, HF occupancy, radiation monitors, muon counting (calibrated to PCC)
- Calibration using beam-separation (vdM) scans, largest uncertainties: differences between measured and predicted beam positions, x-y correlation, pp em interactions
- Integrated lumi: stability and linearity over time as main uncertainties
- Final precision 1.2 2.5%, depending on year

Markus Seidel (RTU, LV)

PAS-LUM-18-002

CMS

PAS-LUM-17-004

LUM-17-003

Particle flow reconstruction

- PF algorithm keeps all tracks, and removes their energy from calorimeter towers
- Charged hadron subtraction (CHS) removes tracks not from primary vertex
- PUPPI algorithm weighs down neutral clusters not close to PV tracks arXiv 1407.6013

Jet clustering

Sequential cluster algorithms defined by the two quantities

$$d_{ij} = \min\left(p_{\mathsf{T},i}^{2k}, p_{\mathsf{T},j}^{2k}\right) \frac{\Delta_{ij}^2}{R^2}, \ d_{iB} = p_{\mathsf{T},i}^{2k}$$

 Behavior controlled by parameter k = $\begin{cases}
 1 & Durham k_t \\
 0 & Cambridge/Aachen \\
 -1 & anti - k_t \to default algorithm, with R = 0.4 \\
 → different sensitivity to soft particles (soft emissions, pileup, underlying event)$

arXiv 0802.1189

Jet energy calibration

- \blacksquare L1Pileup correction subtracts median energy density $\rho\times {\rm jet}$ area
- L2Response correction as function of jet $p_{\rm T}/\eta$, based on MC $p_{\rm T}^{\rm reco}/p_{\rm T}^{\rm gen}$
- L2Residual correction for remaining response differences in data
 - \blacksquare relative η calibration with dijet events
 - \blacksquare absolute calibration with $\gamma/Z{+}{\rm jet}$ events
- CMS Run 2 jet energy scale at level of 1%

DP-2021/033

JME-13-004

B jet identification

- B jets identified by secondary vertices and track properties (e.g. impact parameter)
- ML-based algorithms > 80% efficient for medium working point (1% light-jet mistag rate)
- **D**ata/MC scale factors determined in multijet and $t\bar{t}$ events, slight decrease in efficiency

Muon reconstruction CMS MUO-16-001

- Muons reconstructed from both inner tracker and muon system
- Identification criteria using track quality, need to be compatible with primary vertex
- Trigger paths targeting specific resonances

Muon efficiencies

- Muon efficiencies determined using tag&probe method in J/Ψ or $Z \rightarrow \mu\mu$ events
- Select muon pairs, with tag (probe) muon fulfilling tight (loose) selection criteria
- Fit resonance shape in categories of passing/failing probe criteria

$$ightarrow arepsilon = \mathit{N_{\mathsf{pass}}} / \left(\mathit{N_{\mathsf{pass}}} + \mathit{N_{\mathsf{fail}}}
ight)$$

Muon calibration

- Momentum calibration usually from line shape in $Z
 ightarrow \mu \mu$ events
 - correcting both response (0.2%) and resolution (up to 8%)
 - hard limit from Z mass uncertainty: 2.3e-5
 - shift from mass-dependent width scheme: 3.7e-4
- J/Ψ : mass uncertainty: 1.9e-6, difference Pythia 8 vs PDG: 6.5e-6
- Target precision for W mass: 1e-4

Electrons

CMS EGM-17-001

- Recover bremsstrahlung: "mustache" supercluster, "GSF" tracking algorithm, supercluster refinement (additional conversion and bremsstrahlung clusters)
- ID criteria include SC-to-track matching, HCAL/ECAL energy, isolation
- Energy regression using BDT based on shower shape and PU density (up to \sim 8%)
- Efficiencies and calibration from $Z \rightarrow ee$ events, precision 0.1% (0.3%) in barrel (endcap)

Photons CMS EGM-17-001

- Photons identified by [shower shape, H/E energy, isolation]^{ID}, and electron (track) veto
- $E_{\rm T}/\eta$ -dependent corrections for $H \rightarrow \gamma \gamma$ derived from $Z \rightarrow ee$ events, precision 0.05–0.1 (0.1–0.3)% for photons in EB (EE)
- Validation of energy scale with $Z
 ightarrow \mu\mu\gamma$ events ightarrow within 0.1% of Z
 ightarrow ee

Missing transverse momentum

- Calibration of hadronic recoil \vec{u}_{T} in γ or $Z \to \ell \ell$ events
- \blacksquare PUPPI \rightarrow improved resolution and pileup resilience
- PF resolution limit for PU=0 around 10 GeV, fundamental limit from acceptance: 5 GeV
- Ongoing work on DNN algorithms to further improve $p_{\rm T}^{\rm miss}$ resolution

MC modeling and uncertainties using the example of tt production

Overview MC event generation

- Measurements at the LHC rely on accurate modeling of the known physics processes
- Many stages in event generation handled by general-purpose MC generators (GPMC)

- Most widely used GPMC at the LHC are Pythia 8, Herwig 7, Sherpa 2 arXiv 1101.2599
- Dozens of model parameters to be tuned to experimental data from LEP/SLD and LHC
- Multiple Pythia 8 tunes created and used by ATLAS and CMS
- Tools: Rivet, Professor, Apprentice, MCNNTUNES

ME generators and scale uncertainties

CMS TOP-15-011 CMS TOP-20-001

• Powheg (tt̄@NLO): top p_T shape not covered by μ_R, μ_F 7-point variations

- could cover data bins are uncorrelated in practice: top p_T uncertainty
- MG5_aMCatNLO ($t\bar{t}$ + 2 jets@NLO): similar agreement
- Need NNLO calculation, available now in MiNNLO+PS arXiv 2112.12135

Tuning radiation using $t\bar{t}$ data

CMS TOP-12-041 ATLAS PUB-2015-007

• Jet multiplicity predicted by Pythia8 default/Monash tune is too high \rightarrow tune α_s^{ISR} to data, finding significantly lower values

• default $\alpha_s^{\rm ISR}=$ 0.1365, CMS $\alpha_s^{\rm ISR}=$ 0.1108, ATLAS $\alpha_s^{\rm ISR}=$ 0.121

Run 2: CMS GEN-17-001 CP5 $\alpha_s^{\text{ISR}} = 0.118$ atlas pub-2014-021 A14: $\alpha_s^{\text{ISR}} = 0.125$

Radiation in decays

ALEPH ATLAS STDM-2011-48 ATLAS PUB-2015-007 CMS TOP-17-013

Precision mass measurements with the CMS experiment

B fragmentation and decays

arXiv 1102.4748 MS ATLAS PUB-2014-008 ATLAS PUB-2016-004

- B fragmentation function tuned to LEP data, $x_B = E_B/E_{beam}$
 - Significant impact on alternative top mass measurement using B hadron p_{T}
 - Recent measurements from LHC with track jet as reference, to be checked if they are precise enough CMS PAS-TOP-18-012 ATLAS STDM-2018-52 ATLAS TOPQ-2017-19
- Lifetime of B hadrons: impact on b-tag efficiencies
- **Branching ratio** $B \rightarrow \ell \nu X$: determines neutrino fraction in b jets \rightarrow response

Color reconnection

- Color reconnection reconfigures color strings after parton shower
- Typically minimizes total string length but can also force random reconnections
- Improves description of $\langle p_T \rangle$ vs. N_{ch} in minimum-bias

- 8 TeV: Pythia 6, Perugia2011 vs. Perugia2011noCR tunes, top decay products in CR
- 13 TeV: Pythia 8
 - PartonLevel:earlyResDec = on/off, by default decay products do not participate in CR
 - New CR models: QCD-inspired/CR1 arXiv 1505.01681 gluon-move/CR2 arXiv 1407.6653

Color reconnection and baryon enhancement

- Hadronization model tuned to LEP data, including amount of baryons
- Observed enhancement of strange, charm, and bottom baryons in pp collisions:

- New QCD-inspired CR model able to describe these distributions arXiv 1505.01681 \rightarrow need to include them in the tuning, as done by the authors' Mode 0/2/3 tunes
- Baryon fraction influences jet energy response ATLAS PUB-2022-021 ATLAS ETM-2022-005
- Need more measurements: enhancements also in jets and resonance decays?

Parton shower algorithm: Pythia vs. Herwig

- Full comparison: changes matching, parton shower, MEC, hadronization, underlying event
- Consider Pythia 6 vs. Herwig++ jet response difference (GenJet→Jet)
 - Response depends on particle multiplicity, $p_{\rm T}$ spectrum, and type
 - \blacksquare 0.5% uncertainty on b jet response \rightarrow leading uncertainty in top mass measurements
- **CMS PAS-JME-13-001** Direct measurement of b jet response using Z + b events (0.6%)
- Revise recipe for upcoming parton showers with higher accurcay (PanScales, Vincia, ...)

Top mass measurements

CMS top mass measurements

Direct measurements

- Most precise
- Bound to mass definition of MC

Alternative measurements

- Different observables
- E.g., reduce JES at cost of large b frag uncertainty

Pole mass measurements

- Straightforward from $\sigma_{t\bar{t}}$
- Others often missing resummation corrections

Prescription for direct mass measurements

- **1** Select $t\bar{t}$ events high integrated luminosity, efficient b-tag algorithms
- **2** Construct estimator M_t for top mass
- **3** Parametrize dN/dM_t in terms of m_t^{MC}
- 4 Perform maximum likelihood fit. Calibration and uncertainties on MC, final result on data

Extensions: multi-dimensional fits, ideogram method, matrix-element method

Top-quark mass using profile likelihood approach at 13 TeV CMS PAS-TOP-20-008

- Select events with 1 high- p_T e/ μ and 4 jets (2 DeepJet b tags)
- Jet-parton assignment for hadronic $(t \rightarrow bqq)$ and leptonic $(t \rightarrow b\ell\nu)$ top quarks \rightarrow kinematic fit to $t\bar{t}$ hypothesis $(m_W = 80.4 \text{ GeV}, m_t = m_{\bar{t}})$
- Require $P_{gof} > 0.2$, keep best jet-parton assignment per event

Top-quark mass using profile likelihood approach at 13 TeV CMS PAS-TOP-20-008

 Perform profile-likelihood fit to 5 observables, systematic uncertainties treated as nuisance parameters and constrained

- 2D: constrain jet energy scale from W mass
 - corresponds to Run 1 legacy measurement CMS TOP-14-022
- 3D: m_t information from events failing kinematic fit
- 4/5D: observables sensitive to b-jet energy scale

Top-quark mass using profile likelihood approach at 13 TeV CMS PAS-TOP-20-008

- Constraining components of (b) jet energy scale and FSR modeling
- \blacksquare Result of 5D fit is most precise single measurement to date! \rightarrow $m_t = 171.77 \pm 0.38\,{\rm GeV}$

Top-quark mass in boosted top decays

• Complementary phase space: measure m_t using boosted top quarks

- SCET calculations of top mass peak for $p_{\rm T} > 750 \,{\rm GeV}$
- Estimated $\Delta^{MSR} = m_t^{MC} m_t^{MSR} (1 \, \text{GeV}) = 80^{+350}_{-400} \, \text{MeV}$

Top-quark mass in boosted top decays

- Events with high- $p_{\rm T}$ lepton, $p_{\rm T}^{\rm miss} > 50 \,{\rm GeV}, \geq 1$ b jet
- XCone jet with $p_{\rm T}$ > 400 GeV, improved resolution wrt CA jet
- Constrained jet energy scale from hadronic W subjets
- Unfolded jet mass distribution to particle level, Rivet for 2012+2016 analyses
- Extracted top mass for $p_{\rm T} >$ 400 GeV: $m_t = 172.76 \pm 0.81$ GeV

Top pole mass from cross section

- Most precise $\sigma_{t\bar{t}}$ in dilepton channel (ee, $\mu\mu$, $e\mu$): 2 leptons, 2 neutrinos, 2 b jets
- Cross section extracted from fit over b and additional light jet categories, largest uncertainties from lepton efficiencies and luminosity

 $\begin{array}{lll} \sigma_{t\bar{t}}^{7\,\text{TeV}} &=& 173.6 \pm 2.1 \ (\text{stat})_{-4.0}^{+4.5} \ (\text{syst}) \pm 3.8 \ (\text{lumi}) \ \text{pb} \ \left(_{-3.5}^{+3.6}\%\right) \\ \sigma_{t\bar{t}}^{8\,\text{TeV}} &=& 244.9 \pm 1.4 \ (\text{stat})_{-5.5}^{+6.3} \ (\text{syst}) \pm 6.4 \ (\text{lumi}) \ \text{pb} \ \left(_{-3.5}^{+3.7}\%\right) \\ \sigma_{t\bar{t}}^{13\,\text{TeV}} &=& 803 \pm 2 \ (\text{stat}) \pm 25 \ (\text{syst}) \pm 20 \ (\text{lumi}) \ \text{pb} \ (\pm 4.0\%) \end{array}$

Top pole mass from cross section

Measured and predicted $\sigma_{t\bar{t}}$ have different dependence on m_t

■ *m*⁺ from intersection with the prediction

174.1

 169.9 ± 1.8 (fit + PDF + α_s) $^{+0.8}_{-1.2}$ ABMP16

- Most precise result with NNPDF3.0 at 7+8 TeV: $m_t = 173.8^{+1.7}_{-1.8}$ GeV
- 3 GeV downward shift with ABMP16, enveloping direct measurements

NNPDF3.x

MMHT14

CT14

scale

scale

Higgs mass measurements

Higgs mass measurement $H \rightarrow 4\ell$

- Selecting $H \rightarrow ZZ \rightarrow 4\ell$ events, cuts on Z_1Z_2 to suppress $ZZ/Z\gamma^*$
- Custom lepton corrections from Z and J/Ψ down to very low p_T , mass scale uncertainty 0.04/0.3/0.1% for $4\mu/4e/2e2\mu$ channels
- Extracted mass limited by statistics: $m_H = 125.26 \pm 0.20 \text{ (stat)} \pm 0.08 \text{ (syst)} \text{ GeV}$

HIG-16-041

Higgs mass measurement $H \rightarrow \gamma \gamma$ and combination

- Z
 ightarrow *ee* calibration, $E_{
 m T}$ dependence, γ/e difference, all at level of 0.1%
- Scaling cuts $p_T^{\gamma 1} > m_{\gamma \gamma}/3$ and $p_T^{\gamma 2} > m_{\gamma \gamma}/4$ to avoid distortion of low $m_{\gamma \gamma}$
- \blacksquare Choice of background function (exp, pol, power) \rightarrow discrete nuisance parameter
- Extracted mass: $m_H = 125.26 \pm 0.18 \text{ (stat)} \pm 0.18 \text{ (syst)} \text{GeV}$
- Combination with Run 1 and 4 ℓ : $m_H = 125.38 \pm 0.11 \text{ (stat)} \pm 0.08 \text{ (syst)} \text{ GeV}$

HIG-19-004

W mass measurements

W mass measurements

W-like measurement of Z boson mass

CMS PAS-SMP-14-007

• Muon calibration at level of 2e-4 using J/Ψ and Y(1S), corrected curvature $k = 1/p_T$

$$k^{c} = (A-1)k + qM_{\text{misalignment}} + k/(1+k\epsilon\sin\theta)$$

p_T^{miss} reconstructed from tracks, captures only 40% of recoil but stable against PU, better resolution for transverse mass Jacobian peak

W-like measurement of Z boson mass

- Boson p_{T} distribution reweighted to data, no uncertainty considered
- Large QED (Powheg EW on/off) and statistical uncertainties
- \blacksquare Fit \pm charge triggered samples separately \rightarrow good agreement with each other and PDG

Lepton distributions from W helicity measurement

35.9 fb⁻¹ (13 TeV) CMS $\begin{array}{c} 0.045\\ 0.040\\ 0.035\\ 0.030\\ 0.025\\ 0.000\\ 0.015\\ 0.000\\ 0.$ 0.045 MadGraph5 aMC@NLO PDFs $\oplus \alpha_{c}$ Measured W * $\rightarrow I^+$ 42. 43.51 1.10 Obs./exp. 1.05 and a start a second start a provide to the more at the start a start as a 1.00 0.95 0.90 50 100 150 200 250 300 Unrolled dressed lepton $|\eta|$ bin: $|\eta| \in [0.0, 2.4]$

- Unfolded lepton p_T/η distributions, demonstrated constraints on PDF eigenvectors, why not use for m_W ?
- Lepton calibration was not at desired level for m_W yet
- Not a complete model for theory uncertainties, would result in overfitting

SMP-18-012

Summary

Rich program of precision mass measurements at CMS

- Top mass uncertainty down to 380 MeV
 - with question marks regarding theoretical interpretation though
- Higgs mass uncertainty down to 140 MeV
 - limited by statistics, full-Run 2 yet to come
- W mass work in progress :o)