

M. Nazlim Agaras

13.12.2022

Institut de Física d'Altes Energies

Vector-like leptons

- * Vector-like fermions are simple and consistent candidate extension of the Standard Model
 - Non-chiral, i.e. their left- and right-handed components have the same charges
- Predicted in Composite Higgs models and other UV-complete constructions eg. 4321 Model
- * Typical mass ≤1 TeV
- * The mixing between the **muonphilic vector-like leptons** and the muon gives the main contribution to a_{μ}

VLL decays

- * VLLs come in *doublets/singlets*: one charged VLL, E, and one neutral VLL, N
- Rich phenomenology with multiple leptons, jets, b-jets and missing transverse momentum in the final state

Flavourful VLLs

- Flavourful BSM fermions and scalars (arXiv:2011.12964)
 - Presence of BSM scalars -- can undergo LFV like decays!
- Singlet: ψ_{L,R} i(1, 1, -1), doublet ψ_{L,R} i(1, 2, -1/2) they come in 3 generations, just like SM leptons; i = 1, 2, 3 lepton flavour generation
- * Scalar singlets S_{ij} (1, 1, 0), i, j = 1, 2, 3; in total 9 flavourful scalars
- * κ, κ' are BSM Yukawa couplings
- * The free parameters are: MS , MF , K, K'
- * Assume negligible mass splitting in multiplet, e.g. doublet $\Psi = (\Psi^{-}, \Psi^{0})$
- * Strong constraints on κ from EWK data: $\kappa \nu_h / (2M_F) \le O(10^{-2})$
 - $\triangleright\quad\kappa$ couples leptons to the Higgs
- * κ' can be O(1), and can then explain muon g 2 at 1-loop for given $M_S M_F$

$$\mathcal{L}_{\mathbf{Y}}^{\mathsf{singlet}} = -\kappa \overline{L}_{i} H \psi_{Ri} - \kappa' \overline{E}_{i} (S^{\dagger})_{ij} \psi_{Lj} - y \overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} ,$$

$$\mathcal{L}_{\mathbf{Y}}^{\mathsf{doublet}} = -\kappa \overline{E}_{i} H^{\dagger} \psi_{Li} - \kappa' \overline{L}_{i} S_{ij} \psi_{Rj} - y \overline{\psi}_{Li} S_{ij} \psi_{Rj} + \text{h.c.} ,$$

Flavourful VLLs

* Once kinematically allowed i.e., $M_F > M_S$, the ψ decay predominantly to S plus lepton, roughly for κ '& κ

 $\psi_i^- \to S_{ji} \,\ell_j^- \to \ell_i^- \,\ell_j^+ \,\ell_j^- \,, \quad \psi_i^0 \to S_{ji} \,\nu_j \to \ell_i^- \,\ell_j^+ \,\nu_j \,.$

Flavourful VLLs

- * Searches for "Flavourful VLLs" has started
- MadGraph + Pythia8

- * EN production is dominant
- * Decays with S is dominant (κ/κ')= 10⁻²
- High lepton muliplicities with p_T < 600GeV
- * Low MET
- * High H_T (sum of transverse momentum)

Excess in 4L channels

- Slight excess was seen in ATLAS * analysis
- Phys. Lett. B 824 (2022) 136832 *
- Small excess in 4l signal regions * found to be significantly larger when considering particular lowbackground sub-channels split by lepton flavour
- 4L, low MET and onZ peak and * eeem/emmm final states
- Follow up on this analysis is * ongoing
- Model-independent searches *
- VLL-flavorful will be tested as * model-dependent part!

Asymptotic Safety meets Particle Physics and Friends | 13 De

0.0

Ŷ

2-4 4-6 >6

4

 $\begin{array}{c} \times & \times & \times \\ 4 & 4 & 4 \end{array}$ m_{inv} [10² GeV]

4321 model

UV-complete model that extends the SM gauge groups to a larger group: *

 $SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$

- Can accommodate B-physics anomalies (via a vector LQ). *
- Consistent with all available constraints *
- Three heavy gauge bosons: *
 - Color octet (g') ⊳
 - Vector LQ (U_m) ⊳
 - Color singlet (Z') ⊳
- Three families of vector-like fermions: *
 - VLQ doublets: U/D, C/S, T/B ⊳
 - VLL doublets: N_1/E_1 , N_2/E_2 , N_3/E_3 ⊳

- Produced via <u>EWK production</u> or through interactions with a <u>Z' boson</u> ⊳
- Decay via intermediate leptoquark U, to two quarks and one lepton (mostly third ⊳ generation fermions)

3.0

2.5

Benchmark spectrum

|g'|

Asymptotic Safety meets Particle Physics and Friends | 13 Dec 2022 | Nazlim Agaras

 N_3/E_3

 N_2/E_2

 N_1/E

	Туре	Couple	Lumi	Exclusion	Excess
CMS	<u>Doublet</u>	3 rd gen. leptons	77.4	120-790 GeV	-
	Doublet/singlet	3 rd gen. leptons	138	<1045 GeV/ 125-170 GeV	-
	<u>Doublet in 4321</u> <u>model</u>	3 rd gen. leptons and quarks via LQ	96.5	500–1050 GeV	2.8σ
ATLAS	<u>Singlet</u>	Decaying to a Z boson and a 1 st /2 rd gen. leptons	20.3	114-176 GeV	_
	<u>Doublet</u>	3 rd gen. leptons	139	130-900 GeV	_
	<u>Doublet/singlet</u>	1 st /2 rd gen. leptons	139	TBD	
	<u>Doublet in 4321</u> <u>model</u>	3 rd gen. leptons and quarks via LQ	139	TBD	

* ATLAS have two new VLL searches on the way! -

VLL-taus in ATLAS

- ★ SU(2) doublet VLLs coupling to third generation SM leptons in 2ℓ, 3ℓ and ≥4ℓ
 w/ ≥0τ channels using 139 fb^{-1}
- * Mass points: 130-1000 GeV w/ 100 GeV steps
- * Cross sections were normalised at NLO QCD
- * CRs to normalize main backgrounds (top, WZ, ZZ)
- * Fake factor for fake e/mu/taus, VRs defined by inverted BDT score cut
- SRs defined by cut on BDT score to discriminate the signal from background for all the regions
- * <u>No excess seen</u>, limits sets for **900GeV**

Asymptotic Safety meets Particle Physics and Friends | 13 Dec 2022 | INaziim Agaras

 W^+

 W^{-}

 ν_{π}

Z

VLLe/mu in ATLAS

4321 model - CMS analysis

- * CMS analysis selection driven by the **highly flavourasymmetric** final states produced in the VLL decays
 - high b-jet multiplicity (Nbjet>3)
 - categorised by the number of (hadronically-decaying) τ
 leptons
- * B-jet triggers
- Graph neural network called ABC- Net to discriminate signal from QCD multijet/tt backgrounds
- * <u>No exclusions</u>, overall **2.8***o* excess (more pronounced in tau channels)

<u>B2G-21-004-pas</u>

tau multiplicity	production + decay mode	final state	
	$EE \rightarrow b(t\nu_{\tau})b(t\nu_{\tau})$	$4b+4j+2\nu_{ au}$	
0τ	$\mathrm{EN} ightarrow \mathrm{b}(\mathrm{t} \nu_{\tau}) \mathrm{t}(\mathrm{t} \nu_{\tau})$	$4b + 6j + 2\nu_{\tau}$	
	$NN ightarrow t(t u_{ au}) t(t u_{ au})$	$4b + 8j + 2\nu_{\tau}$	
	$EE \rightarrow b(b\tau)b(t\nu_{\tau})$	$4b + 2j + \tau + \nu_{\tau}$	
1τ	$\text{EN} \rightarrow b(t\nu_{\tau})t(b\tau)$	$4b + 4j + \tau + \nu_{\tau}$	
1 ($\mathrm{EN} \rightarrow \mathrm{b}(\mathrm{b}\tau)\mathrm{t}(\mathrm{t}\nu_{\tau})$	$4b + 4j + \tau + \nu_{\tau}$	
	$NN \rightarrow t(b\tau)t(t\nu_{\tau})$	$4b + 6j + \tau + \nu_{\tau}$	
	$EE \rightarrow b(b\tau)b(b\tau)$	$4b + 2\tau$	
2τ	${ m EN} ightarrow { m b}({ m b} au){ m t}({ m b} au)$	$4b + 2j + 2\tau$	
	NN ightarrow t(b au)t(b au)	$4b + 4j + 2\tau$	

4321 model - New ATLAS analysis

- New ATLAS analysis will exploit all possible leptonic final states including light leptons* (Nbjet>2) in the final state
- * Latest Rel21 analysis, will share expertise from VLLe/mu, LQ analyses etc..
- Make use of trigger buckets* (single/di-tau, bjet and MET) to increase the signal efficiency
- * Sophisticated MVA analysis with many SRs
- * Possibility to set limits with **Z' production***
- * Also possible SUSY interpretations* (e.g. RPV w/ λ'_{333})
- * Analysis is progressing quite fast for the first EB request!

	% of surviving events				
	VLL 400 GeV		VLL 1000 GeV		
	1 tau	2 tau	1 tau	2 tau	
MET (MET > 150 GeV)	18.63	14.45	76.04	65.54	
MET + STT	25.18	25.31	85.69	86.38	
MET + DTT	18.63	54.72	76.04	72.23	
MET + STT + DTT (w/o 4J12)	25.18	45.29	85.69	88.99	
MET + STT + DTT	25.18	65.58	85.69	93.07	

Results expected in LHCP2023

* extending the scope of CMS

- VLLs are well-motivated by a number of theories that seek for explaining the deficiencies of the Standard Model
- * Broad program probing many VLL production/decay modes in both ATLAS and CMS
- * ATLAS is building new analyses targeting not covered areas
- * Many more signatures with VLLs to be probed!

Backup

ATLAS

Variable	2ℓ SSSF, 1τ	2ℓ SSOF, 1τ	2ℓ OSSF, 1τ	2ℓ OSOF, 1τ	$2\ell, \geq 2\tau$	$3\ell, \geq 1\tau$	$4\ell, \geq 0\tau$
$p_T(\tau_1)$	1	1	1	1	2	2	
$M_{l\tau}$	2	2	5	3	1	1	
$L_T + E_T^{\text{miss}}$	3	3	2	2	23	4	1
$E_T^{\rm miss}$	4	7	4	21	5	8	5
$\Delta \phi(\tau_1 E_T^{\text{miss}})$	5	6	6	13	3	3	
$\Delta R(l_1 l_2)$	6	24	7	7	15		17
M_{ii}	7	21	24	15	1	12	19
M_{li}	8	11	26	11	27	14	2
$\Delta \phi(l_1 E_T^{\text{miss}})$	9	16	20	8	20	10	15
$\Delta R(l_1\tau_1)$	10	8	12	6	16	15	
$\Delta R(j_1\tau_1)$	11	9	17	25	25	23	
$\Delta R(l_1 E_T^{\text{miss}})$	12	29	11	19	17	11	10
$\Delta \phi(l_1 l_2)$	13	13	18	16	28	13	9
$\Delta R(\tau_1 E_T^{\text{miss}})$	14	27	9	5	12	9	
$p_T(j_1)$	15	19	10	12	22	19	11
M_T	16	23	16	18	8	17	7
$\Delta \phi(j_1 \tau_1)$	17	20	27	29	24		
M_{ll}	18	10	25	20	10	22	4
$p_T(l_1)$	19	4			30	5	16
$\mathbb{S}(E_T^{\text{miss}})$	20	5	14	24	9	24	8
N_i	21	14	28	23	26		22
$L_T + p_T(\tau)$	22	22		26			
$p_T(l_2)$	23	15			18		
$\Delta R(j_1 E_T^{\text{miss}})$	24	18	23	10	31		21
$\Delta \phi(l_1 j_1)$	25	17	13	17	13	25	13
N _b	26	26	21	22	29	20	14
L_T	27	32			32		3
$M_{i\tau}$	28	31	15	9	6	18	
$\Delta \dot{R}(l_1 j_1)$	29		8	4	11		18
$L_T + H_T$		12	3	14			
M _{OSSF}			22		7	6	12
$\Delta \phi(l_1 au_1)$		25	19		19	16	
$\Delta \phi(j_1 E_T^{\text{miss}})$				27	21		6
H_T		28		28	33	21	20

CMS

Variable type	Used for			
	All signals	Vector-like lepton	Seesaw and leptoquarks	
Event	$H_{\rm T}, p_{\rm T}^{\rm miss}, N_{\rm b}, M_{\ell}$	Q _ℓ	$L_{\mathrm{T}}, p_{\mathrm{T}}^{i}/L_{\mathrm{T}}, L_{\mathrm{T}}/S_{\mathrm{T}}, H_{\mathrm{T}}/S_{\mathrm{T}}, p_{\mathrm{T}}^{\mathrm{miss}}/S_{\mathrm{T}}$	
Lepton	$p_{\mathrm{T}}^{i}, p_{\mathrm{T}}^{\mathrm{OSSF}}$			
Angular	ΔR_{\min}	Max, Min: $\Delta \phi^i$, Max, Min: $\Delta \phi^{ij}$	Max: $\Delta \eta^{ij}$	
Mass	$M_{ m T}^i$	$M^{ij}, M_{\rm T}^{12}, M_{\rm T}^{13}, M_{\rm T}^{23}$		

Backup

