ATLAS

\sim Focus on KEK (+Japanese) Activities \sim

Kazunori Hanagaki (KEK)

Run 3 Started

- Accelerator excellent performance
 - Luminosity leveling set at around 1.9E34
- Data taking tries to catch up with high luminosity

ATLAS KEK/Japan Activities

- Operation
 - Pixel, SCT, (LAr), TGC, High Level Trigger
- Phase-II upgrade
- ♦ (Physics ← coherent with High Level Trigger)

Pixel

- KEK leads DQ (Data Quality) and offline software
 - Universities: Ochanomizu U., Tokyo tech., Waseda U.
 - Y. Takubo (ATLAS/Pixel DQ convener), S. Tsuno (Pixel offline convener)
- 3 class-3 tasks: development of Pixel-DQ infrastructure, effect of radiation damage on Lorentz angle and dE/dx
- Qualification tasks: Pixel clustering studies, Pixel monitoring using information of the bytestream errors

SCT

- Continuous commitment from Japanese SCT institutes (KEK, Kyushu, Osaka, Tokyo-tech, Tsukuba, Waseda)
 - ~10 active staffs/students (1 staff and 4 students based at CERN)
- Operation
 - Huge effort for DAQ/DCS on-call shift and hardware maintenance
 - Develop a web-based tool, centralize DAQ/DCS/DQ information for easier and efficient debugging
- DAQ
 - Improve cabling between SCT modules and RODs to mitigate tracking inefficiency due to ROD busy
 - Fix and maintain various calibratiions
- Radiation damage study
 - Special calibrations (HV, temperature and threshold scan)
 - TCAD simulation to estimate HV to achieve enough high efficiency as a function of the integrated luminosity toward the end of Run 3

Endcap Muon Trigger

Japanese responsibility of TGC operation

Electronics, Power Supply, Trigger/DAQ, Software, DQ
 Phase-I Upgrade

- Large FPGA resource
 - \rightarrow Flexible muon selection
- Additional inputs from new detectors (NSW, RPC BIS78)
 - \rightarrow Reduce fake muons

Installation before COVID (2019)

Integration from Japan (2020-2021)

Detector Maintenance and commissioning in LS2 (2021-2022)

High Level Trigger

- Long history to play leading role of High-Level Trigger (HLT)
 - Coordination on muon HLT
 - K. Nagano (2010-2013), M. Aoki
 (2013-2016), Y. Nakahama (2019-2021)
 - Trigger menu coordinator
 - K. Nagano (2013-2015), Y. Nakahama (2016-2017)
 - Trigger coordinator
 - K. Nagano (2017; Run2)
- Physics-motivated new trigger developments
 - Unconventional track triggers
 - disappearing track, large dE/dx track, displaced vertex
 - Coordination role by K.Nagano (2019-) for ID track trigger group
 - HH \rightarrow bbbb, bb $\tau \tau$ triggers with the delayed stream
 - Development and commissioning by Y. Nakahama with Japanese students

Phase-II Upgrade

Silicon Tracker (ITk)

ITk Layout

- Totally new detector
- ••• Area
 - Pixel 2.7m² \rightarrow 13.5m²
 - Strip $62m^2 \rightarrow 165m^2$
- The number of channels
 - Pixel 90M \rightarrow >5G
 - Strip $6M \rightarrow 60M$

500

Pixel size

1000

 $50 \times 400 \,\mu \text{m}^2 \rightarrow 50 \times 50 \,\mu \text{m}^2$

2000

ITk Layout

n **= 2.0**

η **= 3.0**

n = 4.0

3000

2500

3500

- Strip length $20cm \rightarrow 2.4cm$ (shortest)
- \Rightarrow faster data transfer

1500

n = 1.0

- Radiation harder
 - Innermost 1×10¹⁵ n_{eq}/cm²

 $\rightarrow 2 \times 10^{16} n_{eq}/cm^2$

Japanese ITk Activities

- Pixel
 - 2200 Outer Barrel/EndCap modules
 - ~ 25% of total
 - Sensor

- 170 good sensors were delivered by June
- Finished PRR in November \rightarrow started production
- Bump bonding studies on-going
- In preparation of mass-production of module assembly
- Strip
 - Sensor production, QC/QA
 - A half of Barrel
 - Production is on-going

Bump Bonding Study and Production Setup

- Previously observed Bump delamination by thermal cycling
 - No flux is used to avoid risk of corrosion in Japanese bump bonding
- ✤ With parylene, no delamination observed. 100 cycle [-55,60]°C

Silicon Strip Sensor

- Production is on-going
 - 2931 sensors delivered
- Testing results show all sensor satisfy
 - ► bow < 200 µ m
 - deficit strip < 0.1%</p>

Endcap Muon Trigger for HL-LHC

1500 PS boards

- Identify bunch crossing, Send all TGC hit info.
- Final Design Review (2021/8) → Pre-production
 Final Design Review (2021/8) → Pre-production

50 Sector Logic trigger processor boards

- Run muon trigger/DAQ algorithm
- · First prototype has been tested

150 JATHub boards

- Control/Monitor on-detector FPGAs

Japanese Funding Related Topics

- Budget framework "Particle physics with the High-Luminosity Large Hadron Collider (HL-LHC)" was approved in 2019
 - ► Budget request (KEK→MEXT→MOF) for each single year
 - ► FY2022 request now in MEXT→MOF
 - In my personal impression, no serious issues as long as the request budget size is similar to the original plan
 - But we start suffering from
 - increase of procurement cost due to world wide material cost increase
 - weak Japanese Yen
- KEK DG signed all MoU's related to ATLAS Phase-II upgrade

Additional contribution to the current program which is a package of D1 and ATLAS upgrade

- Discussion at KEK with HEP community
 - HL-LHC additional contribution endorsed as high priority project

June Budget request from KEK to MEXT	KEK to MEXT	Quench heater	RF source	RF distributor	D1-D2 beam pipe	Robot	HTS tape	
	MEXT judgement	\bigcirc	\bigcirc	\bigcirc	\bigcirc	no	no	
August Request from MEXT to MOF	MEXT to MOF	\bigcirc	Request next fiscal year			N/A	N/A	
	MOF decision	?	?	?	?	N/A	N/A	
 December Decision at MOF 	Budget the cur	 Budget size of RF source and distributor is too large to simply "add" to the current program Prograss evaluation for the whole program payt year 						
April next year Start funding	With good assessment, MEXT will request to MOF							

Ordinary Budget : Budget well planned for a fiscal year (April to March next year) \leftarrow Baseline Supplemental Budget : Irregular budget, for example, to recover from a disaster, to stimulate economy... \leftarrow Lucky addition

Conclusions

- Japanese contributions to :
 - Operation
 - Pixel, SCT, LAr trigger, TGC, HLT
 - Phase-I trigger upgrade
 - Phase-II Japanse contributions
 - Pixel in preparation for production, finishing R&D
 - Strip sensor production is on-going
 - Muon trigger development in good shape
 - Very close to start the production
 - Difficulties in procurement of electronics parts
 - Physics