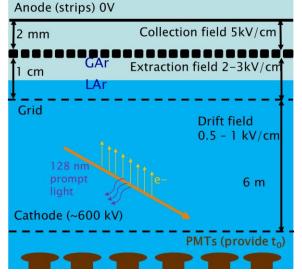
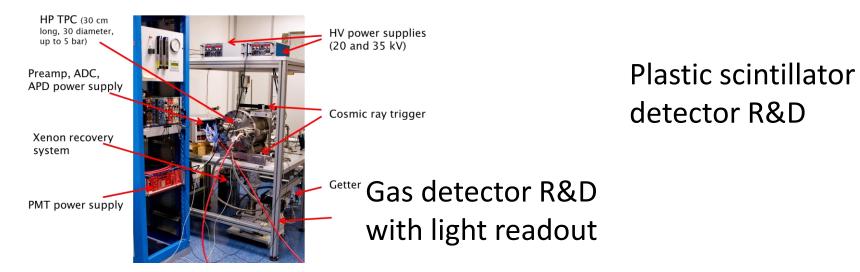


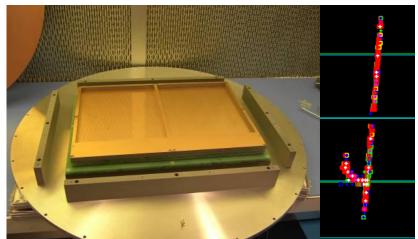
Neutrinos@IFAE Detector R&D

Thorsten Lux

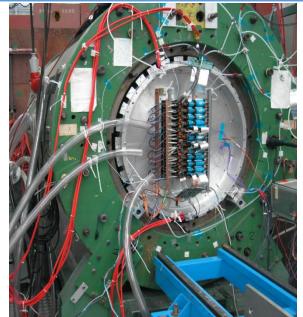

R&D History Overview

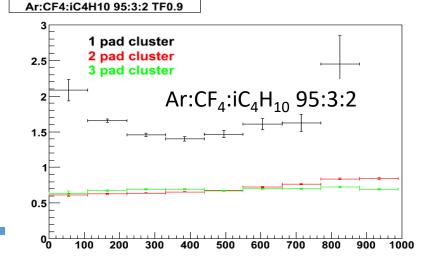


Gas detector R&D with MPGD (MM & GEM) readout

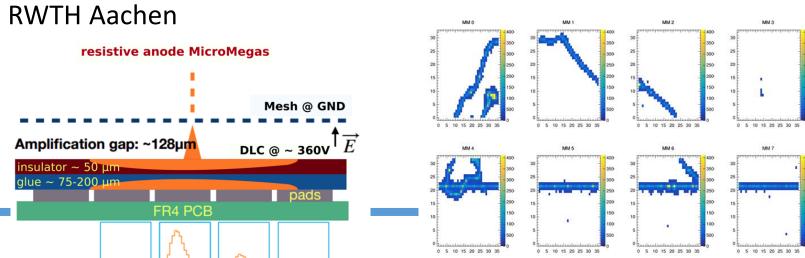


Gas Detector R&D: Past


DRD1 related

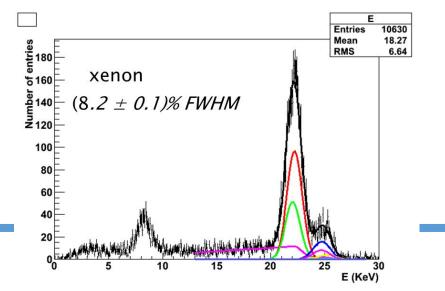


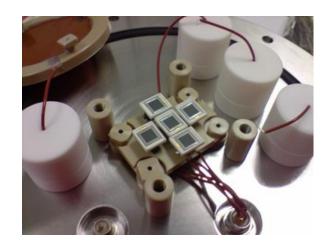
- Started in 2005 with MPGD R&D for TPC readout
- First time with more than one MPGD readout module
- Technologies: GEMs and Bulk Micromegas
- Gas choice simulations
- Experiment: T2K ND280
- First full size TPC with MM readout
- Collaborators: INFN Bari, UniGe, IFIC, Saclay, RWTH Aachen

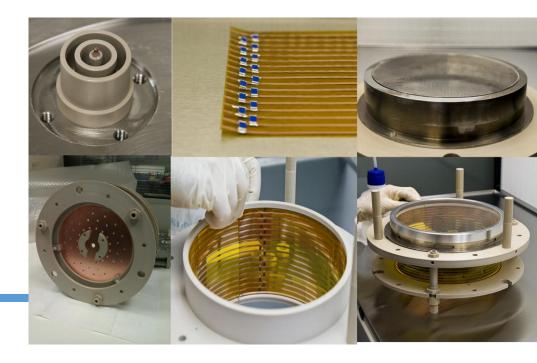

Gas Detector R&D: Ongoing

Institute for High Energy Physics

- Experiment: T2K ND280 (Upgrade)
- 2 new TPCs being built
- Field cage and resistive anode MM (ERAM) R&D
- Field cage built by Spanish company (NEXUS SL)
- First full size field cage made of composite materials => example for future low material budget field cages
- ERAM better performance due to charge spread => interesting for e.g. possible ILC TPC
- Collaborators: INFN Padova/Bari, Saclay, LPHNE Paris,
 RWTH Aachen

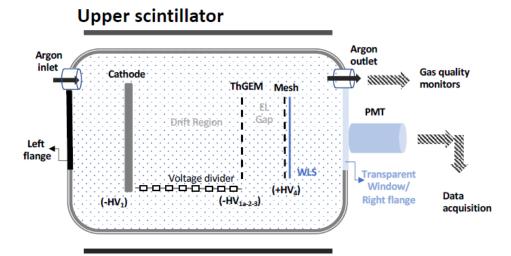

DRD1 related

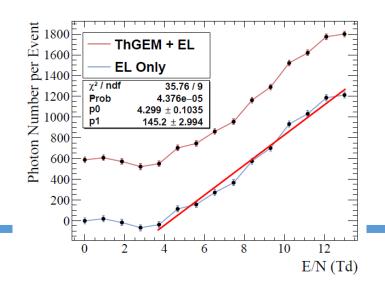



High-Pressure TPC R&D: Past

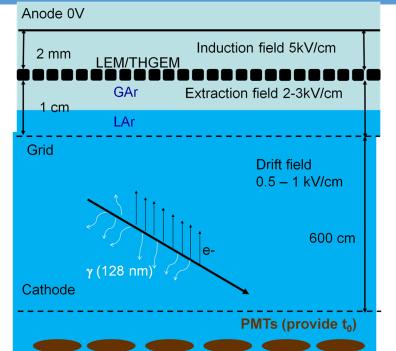
- Started in 2007
- Experiment: NEXT
- Electroluminescence (EL) light readout based on APDs
- HP detector filled with pure Xe
- Collaborators: UniZaragoza, IFIC, Coimbra, CIEMAT

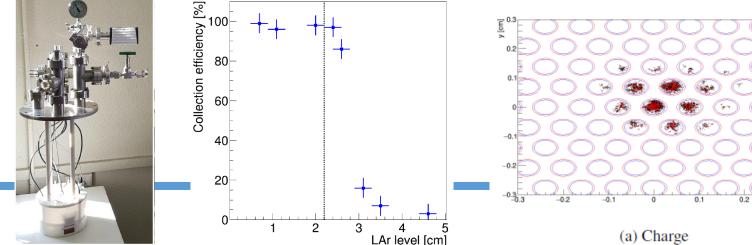
DRD1 related

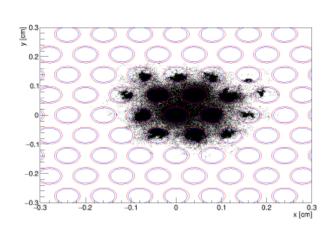

High-Pressure TPC R&D: Today



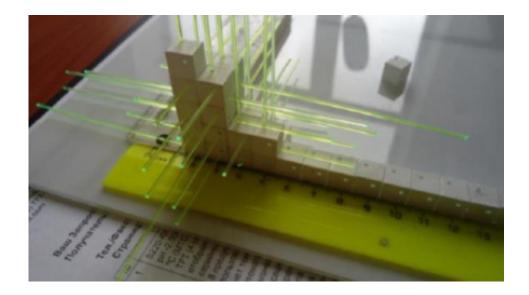
- HP setup transferred to UniGe (2019)
- Modified and used by PhD student
- EL studies with pure argon
- Aim: tracking with SiPM array
- Experiment: pure R&D with neutrino interaction vertices in mind
- Collaborators: UniGe, INFN
 Bari
- Providing experience and simulations done for LAr TPC

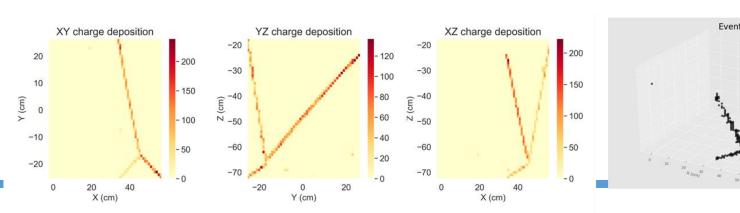

Lower scintillator

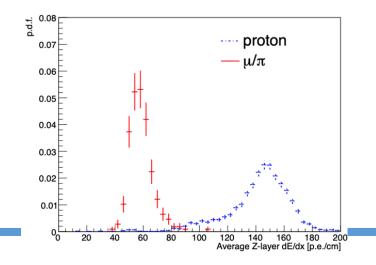



LAr TPC R&D: Past

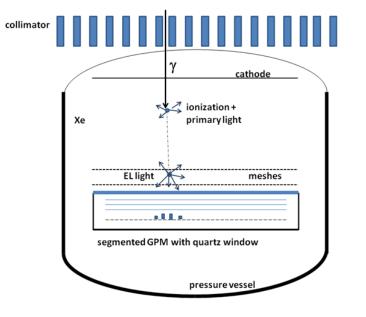
- Dual phase LAr TPC with MPGD-based charge readout and PMT-based readout for primary scintillation light
- Experiment: WA105 => later ProtoDUNE-DP
- CIEMAT/IFAE provided photon detection system
- R&D: WLS, light transport in LAr, simulation studies of charge readout (produces also EL), ion studies in LAr
- Collaborators: CIEMAT (Neutrino/DM), CERN Neutrino Platform, ETH Zurich, Saclay



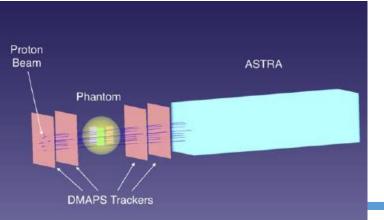

(b) Photons

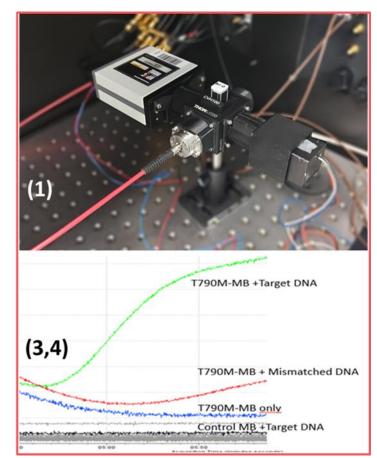

Scintillator Detector R&D: Today

- Experiment: T2K ND280 (Upgrade)
- 2 new plastic scintillator detectors:
 - Novel 3D scintillator tracker: SuperFGD
 - Time-of-Flight detector with 150 ps resolution
- Participated in data taking, key contributions to data analysis, ML techniques for event reconstruction, simulations
- Collaborators: ETH Zurich, CERN, UniGe, INR, Stoney Brook



Institute for High Energy Physics


From HEP to Applied Physics



HP TPC lead to ERC Consolidator proposal reaching the 2nd stage

LAr calibration system R&D basis for cancer detection R&D funded by ATTRACT H2020 grant in collaboration with Leitat Technologies SL

Scintillator tracker R&D basis of idea for energy measurement detector for proton CT. Funded by PDC grant. Collaborators: UniBirmingham, UniGe. Applied for patent.

- Given by Spanish HyperK MOU => participation in a future ND280 Upgrade for HyperK
- 2 objectives for the HyperK ND280 Upgrade:
 - Improved electron (anti)-neutrino cross-section measurement
 - \Rightarrow possibly scintillator tracker with mass of 7-10 t (HyperFGD)
 - \Rightarrow SuperFGD concept with 2 million single cubes not scalable
 - Water target to measure cross-section on same target as in FD
 - \Rightarrow at least 2 t of target mass
 - \Rightarrow Challenge 1: Precise measurement of vertex activity (not visible in WC detectors)
 - \Rightarrow Challenge 2: Interaction should be with H20 and not surrounding material/additives
- First finish the current ND280 Upgrade => Q1/2024
- Then intensify simulation studies to optimize HK ND280 Upgrade design

2 Options:

HyperFGD:

- 3D printed? => ETH started to work on this => would solve scaling problem
- LiquidO-like? => light sharing might improve event reconstruction as in MPGDs
- PlasticO? => opaque plastic scintillator?
- DRD6 ? DRD2 (as LiquidO)?
- Baseline choice

Novel H2O target:

- Water interleaved with scintillator bars?
 => 2D readout only
- 3D printed hollow scintillator cubes filled with H20? => How to get fibers along 3 axes?
- Active water with <1% scintillator thanks to novel quantum materials? => still a dream
- DRD2 with input from DRD5? Partly DRD6?

Manpower, Collaborations, Leadership

- Estimation of manpower extremely difficult since R&D is done in phases
- Group philosophy: everybody should participate on some level on R&D projects
- Estimated manpower for HyperK Upgrade R&D:
 - ~1 FTE from 2 staff scientist
 - 1-1.5 FTE from PhDs
 - 0.5 FTE from engineers
 - 1 FTE from PostDocs
 - Master students
- All R&D projects carried out highly international (see previous slides)
- R&D related leadership positions: technical coordinator and co-leader of ND280 Upgrade project / CERN experiment NP07

Funding

- Moderate funding needed for next 3-years due to feasibility study phase and collaboration with international partners
- HK ND280 Upgrade project
 - 10-15 kEuro/year for material to e.g. 3D printing material: requested
 - 0.5 FTE/year additional technical support: requested
 - 2-year PostDoc: NextGeneration EU funds
 - 1 PhD: Next Generation EU funds
- Proton CT Scintillator Detector: ASTRA
 - 108 kEuro from Prueba de Concepto grant
 - Synergies with HK ND280 Upgrade project

Summary

- Long history in DRD in IFAE Neutrino Group
- R&D projects are experiment and not technology driven
- Working normally in international collaborations
- IFAE is member of RD51, excellent community network, and would like to continue in DRD1
- Near future plans defined by HK MOU commitment
- Not fully clear how this R&D would fit in the considered DRD collaborations => seems general problem
- Wish: DRDs come with scheme for moderate funding for blue-sky research