Simulations of electromagnetic responses in superconducting magnet circuits in the time and frequency domains

Marvin Janitschke¹², Emmanuele Ravaioli², Arjan Verweij², Ursula Van Rienen¹, Christoph Wiesner², Mariusz Wozniak²

> ¹ University of Rostock ² CERN

Acknowledgements: *Special thanks to: M. Bednarek, J. Ludwin, R.G. Saederup and all colleagues involved in the LHC FPA snapshot tests*

Traditio et Innovatio

Gentner scholarship

The Motivation – LHC main dipole

All simulations in this presentation concentrate on the LHC main dipole circuits

Lifetime of LHC

The Motivation

The modelling approach

- Electrical network model incorporating all components of the circuit as lumped elements
- Magnets main inductances are coupled to equivalent loops
- Equivalent loops represent a specific physical phenomena \rightarrow Can be coupled to the whole coil, apertures, poles, turns …
- Loops can be also coupled to other loops
- Equivalent loop parameter $L_{ec,n}$, $R_{ec,n}$ and $M_{ec,n}$ are derived based on for example:
	- 1. Physical phenomena
	- 2. Geometrical and
	- 3. Material properties

The derivation of the equivalent parameter

A generic, electro-magnetic loss mechanism can be described as:

$$
P_{ec} = \beta_{ec} V_{ec} \left(\frac{\partial B_t}{\partial t} \right)
$$

$$
I_{ec} = -\gamma_{ec} \frac{\partial B_t}{\partial t}
$$

$$
\frac{\partial B_t}{\partial t} = -\tau_{ec} B_{ec}
$$

Description of the loss depends on the physical phenomena and requires a certain level of assumptions/ simplifications

Electrical coupling between an electrical element e and the equivalent circuit-loop

$$
-R_{\rm ec}I_{\rm ec}=\sum_{e=1}^{N_E}M_{\rm ec,e}\frac{\partial I_e}{\partial t}+L_{\rm ec}\frac{\partial I_{\rm ec}}{\partial t}
$$

Derivation of the equivalent circuit parameter

$$
R_{ec} = \frac{P_{ec}}{I_{ec}^2} = \frac{\beta_{ec} V_{ec}}{\gamma_{ec}^2}
$$

$$
L_{ec} = \tau_{ec} R_{ec} = \tau_{ec} \frac{\beta_{ec} V_{ec}}{\gamma_{ec}^2}
$$

$$
M_{ec} = \frac{\beta_{ec} V_{ec}}{\gamma_{ec}} f_{ec}
$$

*E. Ravaioli et al. , 2016, Cryogenics, "*Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet", <https://doi.org/10.1016/j.cryogenics.2016.04.004> *E. Ravaioli, 2015, PhD Thesis, "*CLIQ. A new quench protection technology for superconducting magnets", <https://doi.org/10.3990/1.9789036539081>

Equivalent circuit-loops 3 examples

Inter-filament and Inter-strand coupling currents

Persistent currents and magnetization

Eddy currents in Magnet components *Beam-screen*

Equivalent circuit-loops:

1. Inter-filament- and Inter-strand-coupling loops

Well studied and modelled phenomena in the literature

Theory and figures from:

*E. Ravaioli, 2015, PhD Thesis, "*CLIQ. A new quench protection technology for superconducting magnets", <https://doi.org/10.3990/1.9789036539081> A. P. Verweij, 1995, PhD Thesis, "Electrodynamics of Superconducting Cables in Accelerator Magnets" ,<http://cds.cern.ch/record/292595>

Equivalent circuit-loops: 2*. Persistent currents and magnetization*

1. Power loss due to magnetization heat [1]

$P_{\text{Lost}} = \iiint_{V M \neq 0} \left(M \cdot \frac{\partial B}{\partial t} \right) dV$

The magnetization phenomena includes:

2. Stored power in persistent current loops_[1]

[1] M. Sorbi, V. Marrinozzi, IEEE Transaction on Applied Superconductivity, 2016,, Magnetization Heat in Superconductors and in Eddy Current Problems: A Classical Thermodynamic Approach", https://doi.org/10.1109/TASC.2016.2544823

[2] S. Oh et al., arXiv, "Beyond Bean's critical state model: On the origin of paramagnetic Meissner effect", <https://doi.org/10.48550/arXiv.1612.04893> [3] A. P. Verweij, 1995, PhD Thesis, "Electrodynamics of Superconducting Cables in Accelerator Magnets" ,<http://cds.cern.ch/record/292595>

2*. Persistent currents and magnetization*

3. Beamscreen

2. Pers. currents

> Deriving the formulas before and comparing them to the circuit voltage laws we find that:

$$
I_{\mathbf{m},\mathbf{s}} = M_{\mathbf{m},\mathbf{s}} d_{\mathbf{w},\mathbf{s}} \qquad M_{\mathbf{m},\mathbf{s}} - \text{Str}_{d_{\mathbf{w},\mathbf{s}}} \nL_{\mathbf{m},\mathbf{s}} = \mu_0 \frac{\pi}{4} l_{\text{magnet},\mathbf{s}} \qquad l_{\mathbf{magnets}} - \text{Mat}_{d_{\text{magnet},\mathbf{s}}} \nM_{\mathbf{M},\mathbf{m},\mathbf{s}} = \mu_0 \frac{\pi}{4} d_{\mathbf{w},\mathbf{s}} l_{\text{magnet},\mathbf{s}} f_{\mathbf{H},\mathbf{s}} \qquad \text{and} \qquad l_{\mathbf{magnets}} \qquad \text{and} \quad l_{\mathbf{magnets}} \qquad \text
$$

- and magnetization
- and diameter
- agnetic transfer function
- agnet length

The current in the equivalent loop depends on the magnetization of the strand (i.e. its history) \rightarrow Setting the current $I_{ec,2}(x) = I_{m,s}(M)$ can be used to model dynamic losses in the lumped elements

[1] E. Ravaioli, 2020, Internal Document, "Persistent-currents magnetization in STEAM-LEDET", EMDS 2418186

1. IFCL & ISCL

- Included in the magnet to protect the coils from particle and radiation impact
- **1 mm of steel pipe,** co-laminated **with ~75 µm copper**

Photograph: P. Loïez, http://cds.cern.ch/record/39110

1. IFCL & ISCL

2. Pers.

currents 3. Beam-

screen

Equivalent circuit-loops: 3*. Beam-screen eddy currents*

- Due to co-lamination, some steel particles diffused into the copper layer and impacted the purity
- The manufacturing process of the beam-screens as well as different copper charges introduced some differences in copper purity and thickness (see next slide)

Microscopic picture by: K. Buchanan, CERN, 2023

 R_3

Equivalent circuit-loops:

3*. Beam-screen eddy currents*

Usually the two beam-screens installed in the two apertures of an LHC main dipole **are from different production series**

→ **Significant difference** in build-up eddy currents between the electrically connected apertures (We'll see that later)

Derivation of equivalent circuit parameters (similar as before)

- $\label{eq:rec} \left\{ \begin{aligned} R_{\rm ec} = \frac{\pi t_{\rm b} (d_{\rm b}-t_{\rm b}) l_{\rm m} \rho_{\rm b}(T,B)}{2 d_{\rm b}^2 \delta^2 \left[1-\exp\left(-\frac{t_{\rm b}}{\delta}\right)\right]^2} \end{aligned} \right.$ $\lceil \Omega \rceil$ $\mu_0 \pi \overline{t}_{\rm b} (d_{\rm b}-t_{\rm b}) l_{\rm m}$ $L_{\rm ec} = [H]$ $8d_{\rm b}\delta$ | 1 – exp $M_{\rm m,ec} = \frac{\pi t_{\rm b} (d_{\rm b}-t_{\rm b}) l_{\rm m} \tilde{f}_{\rm m,ec}}{4 \delta \left[1-\exp \left(-\frac{t_{\rm b}}{\tilde{s}}\right)\right]}$ $[H]$
- t_b copper layer thickness
- d_b diameter of beam screen
- l_m length of the magnet
- δ characteristic skin depth
- $\rho_b(RRR, T, B)$ resistivity of copper
- $f_{m,ec}$ magnet transfer function on the beam screen

1. IFCL & ISCL

2. Pers.

currents 3. Beam-

screen

Validation of the model 1. Transfer Function Measurements

Measurement of the complex impedance of the magnets in the RB chain from 1 Hz to 100 kHz

Measurements were taken during YETS22/23 by CERN ELQA in Sector 78

1. Transfer Function Measurements

1. Transfer Function Measurements

1. Transfer Function Measurements

IFCL and persistent currents give same effect, as both assume currents on the outer strand surface → *Loops need to be coupled together, to account for shielding*

1. Transfer Function Measurements

IFCL and persistent currents give same effect, as both assume currents on the outer strand surface → *Loops need to be coupled together, to account for shielding*

1. Transfer Function Measurements

1. Transfer Function Measurements

1. Transfer Function Measurements

Measured vs. simulated impedance at 36 Hz 13.0 5% error 12.5 12.0 **Manufacturing tolerances** of the beam-screen led to a **spread** of impedance **around 30 Hz** $\fbox{ \begin{minipage}{0.03\textwidth} \includegraphics{0.03\textwidth} \includegraphics{0.03\text$ $\begin{tabular}{l} \bf \end{tabular} \begin{tabular}{l} \bf \end{tabular} \begin{tabular}{l} \bf \end{tabular} \end{tabular}$ → Utilizing the **beam-screen parameters for each aperture** leads to a good fit along the complete chain of 154 magnets 10.0 9.5 9.0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 Measured Impedance [Ohm] **Spread of +/-30 % in measurements**

05/05/2023 Marvin Janitschke | CHATS-AS 2023 20

2. Temperature changes in the beam-screen

3. Fast Power Aborts in the LHC circuits

In case of failure, quench, machine stop etc. the energy in the LHC main dipole circuits is discharged in resistors \rightarrow Fast Power Abort (FPA)

- 1. Power Converter are disconnected from the chain of magnets ($t \approx 0s$)
- 2. 1st Energy extraction switches are opened and force current through resistors ($t \approx 100$ ms)
- 3. 2nd Energy extraction switches are opened ($t \approx 600$ ms)

Distributed capacitances & inductances \rightarrow Transmission line \rightarrow Travelling voltage wave

Validation of the model 3. Fast Power Aborts in the LHC circuits

"Normal" , **signal "Unbalanced"** , **signal**

Validation of the model 3. Fast Power Aborts in the LHC circuits

"Normal" , **signal "Unbalanced"** , **signal**

3. Fast Power Aborts in the LHC circuits

Actual measurements show an apparent **random** distribution of voltage spikes along the chain

3. Fast Power Aborts in the LHC circuits

3. Fast Power Aborts in the LHC circuits

However, not taking any effects into account, the peak-to-peak distribution would compare like this

3. Fast Power Aborts in the LHC circuits

 \rightarrow Model can reproduce these with good accuracy

However, we see some fair outliers which still need to be explained

Measurement vs. Simulation

05/05/2023 Marvin Janitschke | CHATS-AS 2023 28

Conclusion

In order to **detect outliers** in the large number of LHC magnets and to **find potential pre-cursors** we need:

- 1. A **simple** and **coherent model** across domains, to accurately simulate complex interactions and systems
- **2. Individual magnet models**, taking specific features for every magnet into account
- **3. Physics driven**, **explainable models** that could point to faults/pre-cursors

Conclusion

In order to **detect outliers** in the large number of LHC magnets and to **find potential pre-cursors** we need:

- 1. A **simple** and **coherent model** across domains, to accurately simulate complex interactions and systems
- **2. Individual magnet models**, taking specific features for every magnet into account
- **3. Physics driven**, **explainable models** that could point to faults/pre-cursors

This work applies a **general coupling mechanism** for losses, occuring in superconducting magnets

- → **Analytical** derivation of the loss mechanism and its equivalent parameter
- → **Coupling** of these **equivalent loops** to the magnets main inductance

Conclusion

In order to **detect outliers** in the large number of LHC magnets and to **find potential pre-cursors** we need:

- 1. A **simple** and **coherent model** across domains, to accurately simulate complex interactions and systems
- **2. Individual magnet models**, taking specific features for every magnet into account
- **3. Physics driven**, **explainable models** that could point to faults/pre-cursors

This work applies a **general coupling mechanism** for losses, occuring in superconducting magnets

- → **Analytical** derivation of the loss mechanism and its equivalent parameter
- → **Coupling** of these **equivalent loops** to the magnets main inductance

Can accurately reproduce **Frequency Impedance measurements** and observed **voltage-wave phenomena** → **We start to build a foundation for upcoming modelling & diagnostics**

Thanks a lot for your attention! \odot

Any questions?

Me, in the tunnel, performing some measurements :)

Appendix:

The LHC main dipole and its circuit

All simulations in this presentation concentrate on the LHC main dipole circuits

MP3 CERN, 2020, EDMS Nr. 874713, "Powering Procedure and Acceptance Criteria for the 13 kA Dipole Circuits"

Equivalent circuit-loops: 3*. Beam-screen eddy currents*

Equivalent circuit-loops: 3*. Beam-screen eddy currents*

Pure Layer 1 Polluted Layer 2 200 60 180 50 160 $\begin{array}{c}\n\begin{array}{c}\n\text{1} \\
\text{1} \\
\text{2} \\
\text{2}\n\end{array}\n\end{array}$ $\begin{array}{c}\n\boxed{-}\\ \text{RRR} \end{array}$ Wide spread in the 30 purity of the inner layer 120 $RRR \in [75, 180]$ 20 100 \bullet 10 80 Ω 100 20 40° 60 80 20 40° 60 80 100 Ω Ω Beam Coil $-$ manufacturing order Beam Coil $-$ manufacturing order

1. IFCL & ISCL

2. Pers.

currents 3. Beam-

screen

Validation of the model 1. Transfer Function Measurements

Measurement of the complex impedance of the magnets in the RB chain from 1 Hz to 100 kHz during YETS 22/23

Validation of the model 1. Transfer Function Measurements

Validation of the model 1. Transfer Function 20 **Measurements**

Aperture A \bullet Aperture B \bullet 5% error $15\,$ 10 simulation to measurement
 $[\%]$ $\overline{5}$ error Relative -10 $-15\,$ $-20\,$ 20° 40° 60 80° 100 120 140 $\overline{0}$ Electrical position

Relative error between measurement and simulation at 36 Hz

Usual transient in Main dipole circuit

After each switch opening (PC, EE1, EE2) we observe voltage waves travelling through the magnet \rightarrow Exponentially decaying wave seeing a different phase shift at each magnet + Further phenomena like superposition/ reflection etc.

Validation of the model – 2 Examples 3. Fast Power Aborts in the LHC circuits

Validation of the model - Outlier 3. Fast Power Aborts in 0.20 **the LHC circuits**

Frequency and **Time** domain are always **tightly coupled**, often it can be **not enough** to only look at **one.** A model, **coherently** able to accurately **reproduce both** domains, can give valuable insights!

